塑料污染已成為全球環境危機,高效分選是循環利用的關鍵。傳統近紅外分選儀只能識別少數淺色塑料,而SpecimSWIR高光譜相機可精細區分黑色塑料、多層復合包裝及相似聚合物(如HDPE與LDPE)。例如,在廢塑料回收廠,FX17相機安裝于高速傳送帶上方,實時掃描物料流,結合機器學習分類模型,識別PET瓶、PP蓋、PS托盤等,并觸發氣流噴嘴將其分離。其識別準確率超過98%,遠高于傳統技術。此外,還可用于電子廢棄物中金屬與非金屬分離、城市固廢中有機物提取等場景。瑞典StenaRecycling公司采用Specim系統后,回收純度提升30%,經濟效益明顯。該技術推動了“智能分選”時代的到來。可覆蓋可見光、近紅外、短波紅外等多個光譜波段。江蘇色彩高光譜相機銷售

工業領域利用高光譜相機的“物質識別”能力,突破傳統視覺檢測的局限。在食品加工中,可檢測堅果中的霉變(霉菌***在1400nm處有吸收峰)、水果的損傷(損傷組織細胞破裂改變水分光譜)及肉類的新鮮度(蛋白質氧化導致1550nm反射率變化),剔除不良品準確率達99%。在制藥行業,通過分析藥片包衣層的光譜特征(如羥丙基甲基纖維素在1680nm的C=O峰),監控包衣厚度均勻性,確保藥物釋放速率一致性;對原料藥混合過程,高光譜成像可實時追蹤各組分分布,避免混合不均導致的藥效偏差。在半導體制造中,短波紅外高光譜相機可穿透硅片表面,檢測晶圓內部的微裂紋(裂紋導致光散射改變光譜形態),提升芯片良率。快速檢測高光譜相機維修體積小巧,便于集成到自動化生產線中使用。

在木材加工與造紙工業中,Specim高光譜相機可用于檢測纖維素、木質素、水分含量及涂層均勻性。在原木分選中,可識別樹種、腐朽區域或節疤,優化鋸切方案;在刨花板生產中,可監控膠黏劑分布是否均勻,防預防脫發層風險。對于涂布紙張,VNIR相機可測量涂層厚度并評估光澤度一致性,避免印刷缺陷。某北歐造紙集團采用SpecimFX10系統對銅版紙進行在線檢測,結合PLSR模型實時反饋涂布量,使產品克重變異系數降低至1.8%以下。該技術不只提升產品質量,還減少了化學品浪費,助力綠色制造轉型。
高光譜相機的硬件系統由光學前端、分光模塊、探測器及數據處理單元四部分構成。光學前端采用高透射率鏡頭,確保不同波段光信號高效聚焦;分光模塊是重點技術差異點:光柵型通過衍射光柵分光,光譜分辨率高但體積較大;濾光片型(如可調諧濾光片或量子點濾光片)通過波長選擇性透過實現分光,結構緊湊適合輕量化應用;傅里葉變換型基于干涉原理,適用于紅外波段的高精度測量。探測器需匹配光譜范圍:硅基CCD/CMOS覆蓋可見光-近紅外(VNIR,400-1000nm),銦鎵砷(InGaAs)探測器則延伸至短波紅外(SWIR,900-2500nm)。數據處理單元集成FPGA或DSP芯片,實時完成原始數據的暗電流校正、輻射定標及光譜重建,確保輸出數據立方體的準確性與可用性。提供SDK,支持Python、MATLAB等二次開發。

高光譜相機是一種融合成像技術與光譜分析的前端設備,其重點在于“圖譜合一”的特性——既獲取目標物體的空間圖像,又采集每個像素點的連續光譜信息。與傳統RGB相機只捕捉紅、綠、藍三個波段不同,高光譜相機通過分光元件(如光柵、棱鏡或濾光片陣列)將入射光分解為數百個窄波段(通常為5-10nm帶寬),覆蓋從可見光(400nm)到短波紅外(2500nm)的寬廣光譜范圍。成像時,探測器(如CCD或InGaAs傳感器)記錄下每個空間位置對應的光譜強度,形成三維“數據立方體”(x-y空間維度+λ光譜維度)。這種機制使得每個像素都具備獨特的“光譜指紋”,能夠區分人眼或普通相機無法辨識的細微物質差異,為物質識別、成分分析提供**性工具。每個像素包含完整光譜曲線,實現“圖譜合一”分析。快速檢測高光譜相機維修
可分析肉類脂肪、水分、蛋白質等營養成分。江蘇色彩高光譜相機銷售
文物修復需無損檢測手段,Specim高光譜相機可在不接觸畫作、手稿或壁畫的前提下,揭示隱藏信息。在可見-近紅外波段,可穿透清漆層,識別底層草圖、修改痕跡或偽造簽名;在短波紅外,可區分不同顏料(如鉛白、群青、朱砂),判斷年代與真偽。例如,盧浮宮使用SpecimAisaKESTREL系統對達芬奇手稿進行掃描,成功復原被墨水掩蓋的文字。在古籍保護中,可檢測紙張老化程度、水漬污染或修復補丁。該技術為藝術史研究提供了科學依據,推動“科技考古”發展。江蘇色彩高光譜相機銷售