光學非接觸應變測量技術的廣泛應用,正在重塑多個關鍵行業的研發與生產模式。研索儀器憑借其完善的產品體系與專業的技術服務,已在航空航天、汽車工程、土木工程、新能源等領域積累了大量案例,成為行業技術升級的重要推動者。在航空航天領域,安全性與輕量化是永恒的追求,研索儀器的測量技術為這一目標提供了精確保障。其 isi-sys 激光無損檢測系統采用 Shearography/ESPI 技術,可對復合材料結構進行非破壞性強度檢測,識別內部缺陷與分層損傷,無需拆解即可完成飛行器結構的安全評估。在飛機風洞試驗中,VIC-3D 系統可實時測量不同攻角、風速條件下機翼的動態變形,獲取關鍵部位的應變分布與振動特性,為機翼結構優化提供數據支撐。在火箭發動機渦輪葉片測試中,極端環境測量系統能夠模擬高溫高壓工況,監測葉片在工作狀態下的變形情況,確保發動機運行的可靠性。光學非接觸應變測量認準研索儀器科技(上海)有限公司!浙江VIC-2D數字圖像相關總代理

激光干涉法(如 ESPI、Shearography)利用激光干涉條紋的變化反映微小形變,精度達納米級,超高精度、非接觸、可測全場應變,精密零件檢測、復合材料缺陷識別、振動模態分析,激光多普勒測速 / 測振(LDV),基于多普勒效應,測量物體表面的速度 / 振動位移,間接推導應變,動態響應快(納秒級)、遠距離測量,高速旋轉部件監測、振動應變分析、沖擊載荷測試,全息干涉法,記錄物體變形前后的激光全息圖,通過干涉條紋還原三維形變,三維全場測量、高精度形變還原,航空航天結構件檢測、精密儀器變形分析。湖南哪里有賣VIC-2D非接觸應變系統研索儀器光學非接觸應變測量系統無需貼片或預加工,避免接觸式傳感器對試樣的干擾,適用于各種惡劣環境。

新能源:電池安全與風電葉片的“光學守護”鋰離子電池在充放電過程中,電極材料體積變化引發應力集中,可能導致電池鼓包或短路。微型DIC系統結合透明電解池,實時觀測硅基負極在鋰嵌入/脫出過程中的應變演化,揭示了裂紋萌生與容量衰減的關聯機制,為高安全性電極材料設計提供指導。在風電領域,葉片在氣動載荷與重力作用下產生復雜變形,傳統應變片難以覆蓋整個曲面。無人機載DIC系統通過空中拍攝葉片振動視頻,反演全場應變分布,結合機器學習模型預測葉片疲勞壽命,使運維成本降低25%。
光學應變測量的歷史可追溯至19世紀干涉儀的發明,但其真正從實驗室走向工程應用,得益于20世紀中葉激光技術、計算機視覺與數字信號處理的突破。縱觀其發展歷程,可劃分為三個階段:激光器的出現使高相干光源成為可能,推動了電子散斑干涉術(ESPI)與云紋干涉術的誕生。ESPI通過記錄物體變形前后的散斑干涉圖,利用條紋分析提取位移場,實現了全場應變測量,但依賴膠片記錄與人工判讀,效率低下。與此同時,全息干涉術在理論層面證明了光學測量可達波長級精度,卻因防振要求苛刻而局限于靜態測量。光學三維應變測量技術達到了非接觸性、無破壞性、精度和分辨率高以及測量速度快等特點。

ESPI:動態全場測量的先鋒ESPI利用激光散斑的隨機性作為信息載體,通過雙曝光或時間序列干涉圖處理,提取變形引起的相位變化。其獨特優勢在于無需制備光柵或標記點,適用于粗糙表面與動態過程測量。在航空航天領域,ESPI已用于檢測飛機蒙皮在氣動載荷下的振動模態與疲勞裂紋萌生。云紋干涉術:高靈敏度與高空間分辨率的平衡云紋干涉術通過交叉光柵衍射產生高頻云紋條紋,其靈敏度可達亞微米級,空間分辨率優于10線對/毫米。該技術特別適用于金屬材料塑性變形、復合材料界面脫粘等微區應變分析。例如,在碳纖維復合材料層壓板測試中,云紋干涉術可清晰捕捉層間剪切應變集中現象,為結構優化提供數據支撐。研索儀器光學非接觸應變測量系統有很好的環境兼容性,耐高溫、腐蝕等惡劣條件(如發動機部件熱變形測試)。江蘇掃描電鏡非接觸式系統哪里可以買到
研索儀器系統擅長高溫、高速、微小尺寸等復雜環境下的非接觸應變表征。浙江VIC-2D數字圖像相關總代理
土木工程橋梁、建筑結構的荷載試驗應變監測;混凝土、鋼結構的長期變形跟蹤;隧道、大壩的位移與應變安全監測。5. 電子電器芯片、電路板在溫度循環中的熱應變分析;手機、筆記本電腦外殼的抗壓 / 抗摔應變測試;電池封裝結構的變形監測。散斑制備:DIC 技術需在被測物體表面制作均勻散斑(噴漆 / 貼紙),影響測量精度;環境要求:激光干涉法對振動、溫度變化敏感,需在實驗室或穩定環境下使用;數據處理:選擇自帶專業分析軟件的設備,減少后期數據處理工作量;校準需求:定期對設備進行校準(如激光干涉儀需每年校準一次),確保數據準確性。浙江VIC-2D數字圖像相關總代理