在發酵過濾領域,陶瓷旋轉膜動態錯流過濾技術有著廣泛的應用。在發酵生產流程中,需要將懸浮在發酵液中的固體顆粒與液體進行分離,且要求濾速快、收率高,得到澄清濾液或純凈固體。傳統板框過濾在處理發酵液時,常面臨膜污染嚴重、處理效率低等問題。而飛潮的 Dycera 旋轉陶瓷膜過濾系統通過動態錯流過濾原理,讓膜片高速旋轉,濾液以切線通過方式濾出,未濾液形成的湍流不斷沖洗膜表面,不僅防止濾膜阻塞,還提升了膜通量,延長了膜壽命,非常適合高粘度發酵液的過濾,對細胞顆粒破壞力小。在酶制劑生產過程中,發酵液的澄清處理極為關鍵。采用 Membralox^{®} 陶瓷錯流技術,能夠實現與培養基特性無關的可靠和高質量濾液。膜分離法不受細胞尺寸、密度以及介質粘度影響,可提供完全的物理屏障,確保比較好分離效率,同時減少了下游工藝成本,提高了整體生產效率!!石油化工中分離油品與烴類,提高催化效率。溫度敏感菌體陶瓷旋轉膜分離濃縮系統按需定制

在高濃度、高黏度(高濃粘)物料的分離濃縮領域,傳統過濾技術常因通量衰減快、易堵塞、能耗高等問題受限,而旋轉陶瓷膜動態錯流技術憑借其獨特的抗污染機制和材料特性,成為該類復雜體系的高效解決方案。以下從應用場景、技術優勢、典型案例及關鍵技術要點展開分析:
一、高濃粘物料的特性與分離難點
1.物料特性
高濃度:固相含量通常≥5%(如發酵液菌體濃度10~20g/L、食品漿料固含量15%~30%),或溶質濃度高(如高分子聚合物溶液)。
高黏度:黏度可達100~1000mPa?s(如水基油墨、果膠溶液、淀粉糊),甚至更高(如生物多糖溶液),流動阻力大。
復雜組分:常含膠體、蛋白質、微生物、有機大分子等,易形成凝膠層或黏性濾餅。
2.傳統技術的局限性
死端過濾:高黏度導致流速極慢,顆粒快速堆積堵塞濾孔,通量衰減至初始值的10%~30%。
靜態膜過濾:濃差極化嚴重,黏度升高加劇傳質阻力,需頻繁化學清洗(周期≤4小時),膜壽命短。
離心/壓濾:高黏度體系能耗劇增(離心功率隨黏度平方增長),且固相脫水困難,需添加助濾劑,增加成本和二次污染風險。 溫度敏感菌體陶瓷旋轉膜分離濃縮系統按需定制正極材料(碳酸鋰、磷酸鐵鋰)生產中提升漿料固含量。

在發酵過濾領域,陶瓷旋轉膜動態錯流過濾技術有著廣泛的應用。
在發酵生產流程中,需要將懸浮在發酵液中的固體顆粒與液體進行分離,且要求濾速快、收率高,得到澄清濾液或純凈固體。傳統板框過濾在處理發酵液時,常面臨膜污染嚴重、處理效率低等問題。而領動的旋轉陶瓷膜過濾系統通過動態錯流過濾原理,讓膜片高速旋轉,濾液以切線通過方式濾出,未濾液形成的湍流不斷沖洗膜表面,不僅防止濾膜阻塞,還提升了膜通量,延長了膜壽命,非常適合高粘度發酵液的過濾,對細胞顆粒破壞力小。
在酶制劑生產過程中,發酵液的澄清處理極為關鍵。采用 Membralox^{®} 陶瓷錯流技術,能夠實現與培養基特性無關的可靠和高質量濾液。膜分離法不受細胞尺寸、密度以及介質粘度影響,可提供完全的物理屏障,確保比較好分離效率,同時減少了下游工藝成本,提高了整體生產效率。
陶瓷旋轉膜技術應用于果汁與植物蛋白飲料的澄清與濃縮應用場景:蘋果汁、葡萄汁、椰汁、大豆蛋白飲料的精制與濃縮。技術優勢:替代傳統工藝:取代硅藻土過濾、板框壓濾,直接截留果汁中的果膠、纖維素、微生物(如酵母菌),濾液透光率≥95%,濁度<0.5NTU。濃縮效率提升:通過納濾膜濃縮果汁,可溶性固形物(TSS)從10°Brix提升至25°Brix以上,能耗比傳統蒸發濃縮降低40%,同時保留花青素、多酚等營養成分。節水環保:清洗水可循環使用,廢水排放量減少30%,降低污水處理成本。案例:某橙汁加工廠采用0.1μm陶瓷膜澄清,替代原有的明膠-硅溶膠澄清工藝,過濾效率提升3倍,果膠去除率達98%,后續濃縮工序能耗下降50kWh/噸。塊化設計便于擴展,適用于食品、制藥、化工等多領域的液體凈化。

錯流旋轉膜設備在乳化油處理中的技術優勢
抗污染能力:動態剪切減少膜表面濾餅層形成,膜通量衰減速率比靜態膜降低50%以上,清洗周期延長。
分離效率:油相截留率≥99%,水相含油量可降至50ppm以下,滿足嚴格排放標準(如GB8978-1996三級標準≤100ppm)。
能耗與成本:相比化學破乳+離心工藝,藥劑用量減少80%,能耗降低30%~50%,設備占地面積減少40%。
操作靈活性:可根據乳化油成分(如礦物油/植物油、表面活性劑類型)調整膜材質與工藝參數,適應性強。
環保性:無化學藥劑殘留,濃縮油相可回收,減少危廢產生,符合綠色化工要求。 廢水處理中回收金屬離子,提升資源利用率。碟式陶瓷膜旋轉膜分離濃縮系統共同合作
膜面流速7-14m/s,湍流促發抑制濾餅堆積。溫度敏感菌體陶瓷旋轉膜分離濃縮系統按需定制
隨著技術的不斷發展,旋轉陶瓷膜動態錯流過濾技術也在持續創新優化。
一方面,在膜材料研發上,不斷探索新型陶瓷材料配方,以進一步提升膜的過濾精度、通量以及化學穩定性。例如,通過納米技術對陶瓷膜的微觀結構進行調控,使膜孔徑分布更加均勻,提高對微小顆粒和分子的截留能力。
另一方面,在設備結構設計上,更加注重提高設備的緊湊性、自動化程度和運行穩定性。研發新型的驅動系統,使膜片旋轉更加平穩,降低能耗和噪音;優化膜組件的密封結構,防止泄漏,確保過濾過程的高效進行。 溫度敏感菌體陶瓷旋轉膜分離濃縮系統按需定制