熒光壽命成像技術用于表征DNA壓縮和基因活性。研究團隊發展了熒光壽命成像技術(FLIM),表征DNA壓縮的動態過程,克服了以往方法的局限性。研究團隊提出了兩種精確測量DNA壓縮程度的FLIM分析方法。第一種方法基于加入DNA的熒光探針的熒光壽命與其局部微環境折射率之間的逆二次方關系,熒光探針的壽命隨DNA壓縮密度而變化,從而可表征DNA壓縮程度。第二種方法是將熒光標記的核苷酸整合到DNA鏈中,通過一種叫做熒光共振能量轉移(FRET)的技術獲得其熒光壽命值的變化,從而反映出DNA的壓縮程度的動態變化過程。細胞培養結果證明,兩種FLIM分析方法都可以成功表征DNA壓縮的動態過程。熒光壽命是用于幾種...
熒光壽命成像技術用于表征DNA壓縮和基因活性。研究團隊發展了熒光壽命成像技術(FLIM),表征DNA壓縮的動態過程,克服了以往方法的局限性。研究團隊提出了兩種精確測量DNA壓縮程度的FLIM分析方法。第一種方法基于加入DNA的熒光探針的熒光壽命與其局部微環境折射率之間的逆二次方關系,熒光探針的壽命隨DNA壓縮密度而變化,從而可表征DNA壓縮程度。第二種方法是將熒光標記的核苷酸整合到DNA鏈中,通過一種叫做熒光共振能量轉移(FRET)的技術獲得其熒光壽命值的變化,從而反映出DNA的壓縮程度的動態變化過程。細胞培養結果證明,兩種FLIM分析方法都可以成功表征DNA壓縮的動態過程。熒光壽命成像一般不...
熒光壽命成像中的熒光壽命是什么意思?有什么用?假定兩種衰減躍遷速率分別為Γ和knr,則激發態衰減速率可表示為:其中n(t)表示時間t時激發態分子的數目,由此可得到激發態物種的單指數衰減方程。熒光壽命定義為衰減總速率的倒數:熒光強度正比于衰減的激發態分子數,因此可將上式改寫為:其中I0是時間為零時的熒光強度,τ為熒光壽命。也就是說熒光強度衰減到初始強度的1/e時所需要的時間就是該熒光物種在測定條件下的熒光壽命。事實上當熒光物質被激發后有些激發態分子立即返回基態,有的甚至可以延遲到5倍于熒光壽命時才返回基態,這樣就形成了實驗測定的熒光強度衰減曲線。由于熒光壽命成像不受樣品濃度影響具有其他熒光成像技...
熒光壽命顯微成像(Fluorescence lifetime imaging microscopy,FLIM)是熒光壽命測量和熒光顯微技術的結合,熒光壽命顯微成像具有高特異性、高靈敏度、可定量測量微環境變化和分子間相互作用、不受探針濃度、激發光強度和光漂白影響等優點。熒光壽命成像(FLIM)對細胞信號傳導及調控,蛋白間的相互作用等生物研究發揮著很大作用。利用熒光壽命成像顯微鏡技術可實現可以實時監控發光納米顆粒在活細胞內的穩定性。在過去的十年中,光學技術硬件和軟件、材料科學和生物醫學的迅速發展,共同促進了FLIM技術及其應用的巨大進步。熒光壽命成像技術可顯示單指數或多指數熒光衰減。浙江三維熒光壽...
熒光壽命顯微成像(Fluorescence lifetime imaging microscopy,FLIM)是熒光壽命測量和熒光顯微技術的結合,已普遍應用于生物醫學研究和其他領域。FLIM具有高特異性、高靈敏度、可定量測量微環境變化和分子間相互作用、不受探針濃度、激發光強度和光漂白影響等優點。在過去的十年中,光學技術硬件和軟件、材料科學和生物醫學的迅速發展,共同促進了FLIM技術及其應用的巨大進步。盡管經過幾十年的技術發展,FLIM技術在實際應用中仍然面臨著一些挑戰,例如:FLIM的成像分辨率也會受到光衍射的限制,因此,在實際應用中,我們經常需要在成像速度、圖像質量和微環境壽命精度之間進行權...
熒光壽命成像中的熒光壽命是什么意思?有什么用?假定兩種衰減躍遷速率分別為Γ和knr,則激發態衰減速率可表示為:其中n(t)表示時間t時激發態分子的數目,由此可得到激發態物種的單指數衰減方程。熒光壽命定義為衰減總速率的倒數:熒光強度正比于衰減的激發態分子數,因此可將上式改寫為:其中I0是時間為零時的熒光強度,τ為熒光壽命。也就是說熒光強度衰減到初始強度的1/e時所需要的時間就是該熒光物種在測定條件下的熒光壽命。事實上當熒光物質被激發后有些激發態分子立即返回基態,有的甚至可以延遲到5倍于熒光壽命時才返回基態,這樣就形成了實驗測定的熒光強度衰減曲線。由于熒光壽命成像不受樣品濃度影響具有其他熒光成像技...
生物發光與熒光壽命成像不同點:產生光子的原理不同,類似于我們都是通過肉眼去觀察螢火蟲和發光水母一樣,生物發光與熒光成像在本質上,都是機體中特定的細胞或材料發出光子,被高靈敏度的CCD檢測到形成圖像,但是生物發光與熒光壽命成像產生光子的過程和機制是完全不同的。生物發光與熒光成像相同點:都需要對細胞進行標記。生物發光產生的光子和熒光壽命成像產生的光子都可以被高靈敏的CCD檢測并形成圖像,就像一個人的眼睛就可以既看到螢火蟲又可以看到發光水母一樣。除此之外,生物發光和熒光壽命成像都需要對目標細胞進行標記,讓細胞產生熒光素酶或者熒光蛋白。熒光壽命成像和生物發光的不同之處:生物發光與熒光壽命成像產生光子的...
熒光壽命成像技術能夠實時監控納米顆粒在細胞內的穩定性。FLIM不但具有其它熒光顯微鏡所具有的高靈敏度、可檢測生物生物樣品等優點,它在監控熒光納米材料的穩定性上還具有以下幾個優勢:(1)熒光壽命不受熒光探針的濃度的影響,可排除納米材料的胞吐及細胞分化導致的納米顆粒的稀釋等對測量的影響;(2)很多常見的發光材料的熒光壽命都遠遠大于細胞的自熒光的壽命,很易去除生物自熒光對熒光成像的干擾;(3)發光材料的熒光壽命和其材料的穩定性密切相關,熒光壽命的改變可以靈敏地反映相應材料的化學穩定性。基于上述原理,他們利用FLIM技術系統考察了半導體量子點和金納米簇在活的細胞(HeLa)里72小時內的穩定性,以及不...
熒光壽命成像的優勢:通過熒光壽命來進行成像,只需要拍攝一次就完成圖像采集,不但減少了成像時間,而且降低了激光對樣品的損傷。熒光壽命成像使用簡單,方便快捷,不需要進行參數調節。熒光壽命成像提供了壽命分布的二維圖形視圖。熒光壽命是熒光分子在激發態停留的時間,這個時間可以反映熒光分子的內在屬性和所處的微環境,是一個很有用的工具。以往,熒光壽命的測量和計算是件非常復雜和耗時的工作,只有少數專業的科學家關注和使用該工具。傳統的多色成像實驗根據光譜差異來設計,會有串色等限制,而且需要多次采集圖像,會造成樣品的光損傷。生物發光與熒光成像相同點是都需要對細胞進行標記。江蘇三維熒光壽命成像哪家好熒光壽命成像技術...
熒光壽命成像是什么?如果分子環境刺激激發態衰變而不發射光子,則熒光強度會降低(淬滅)。熒光淬滅是一條單獨的發射路徑,因此在動力學上與熒光過程形成競爭關系。激發態存儲現在可以通過一個以上的過程衰變,從而縮短熒光壽命。這種壽命的改變可用于收集分子環境的信息。一種特殊類型的淬滅是將激發能量以非輻射的方式傳遞到相鄰的不同熒光染料中:“熒光共振能量轉移”,FRET。此時,不只第1個熒光染料(供體)變暗,壽命變短,而且第二個熒光染料(受體)在“錯誤的”激發顏色下開始發光。由于這種效果的產生需要兩種熒光染料(小于10 nm)的密切接觸,因此將其用作研究分子相互作用的“分子標尺”。它也是許多現代FRET生物傳...
熒光壽命成像可以干什么?熒光壽命成像圖像中每一個像素點在phasor圖上都有一個對應的點。因此我們可以獲取每個像素點的壽命信息,也可以獲知每一壽命所對應的圖像區域。熒光壽命成像可以提供熒光強度(光子數)和光子壽命的空間分布,具有200 nm的空間分辨率和皮秒量級的時間分辨率。通過雙光子激發(結合飛秒脈沖和共焦顯微鏡)可以直接檢測熒光和時間分辨的熒光壽命。這種無損檢測技術,無需解剖或專門制造分層樣品,不但可在樣品表面,還可在樣品表面以下實現深度解析測量。特別適用于新材料、光子學、光伏、光催化、生物材料、納米材料和納米復合材料以及其相關的原理探究和設計優化。熒光壽命成像具有其它熒光顯微鏡所具有的高...
熒光壽命成像技術能夠實時監控納米顆粒在細胞內的穩定性。FLIM不但具有其它熒光顯微鏡所具有的高靈敏度、可檢測生物生物樣品等優點,它在監控熒光納米材料的穩定性上還具有以下幾個優勢:(1)熒光壽命不受熒光探針的濃度的影響,可排除納米材料的胞吐及細胞分化導致的納米顆粒的稀釋等對測量的影響;(2)很多常見的發光材料的熒光壽命都遠遠大于細胞的自熒光的壽命,很易去除生物自熒光對熒光成像的干擾;(3)發光材料的熒光壽命和其材料的穩定性密切相關,熒光壽命的改變可以靈敏地反映相應材料的化學穩定性。基于上述原理,他們利用FLIM技術系統考察了半導體量子點和金納米簇在活的細胞(HeLa)里72小時內的穩定性,以及不...
熒光壽命成像技術用于表征DNA壓縮和基因活性。研究團隊發展了熒光壽命成像技術(FLIM),表征DNA壓縮的動態過程,克服了以往方法的局限性。研究團隊提出了兩種精確測量DNA壓縮程度的FLIM分析方法。第一種方法基于加入DNA的熒光探針的熒光壽命與其局部微環境折射率之間的逆二次方關系,熒光探針的壽命隨DNA壓縮密度而變化,從而可表征DNA壓縮程度。第二種方法是將熒光標記的核苷酸整合到DNA鏈中,通過一種叫做熒光共振能量轉移(FRET)的技術獲得其熒光壽命值的變化,從而反映出DNA的壓縮程度的動態變化過程。細胞培養結果證明,兩種FLIM分析方法都可以成功表征DNA壓縮的動態過程。熒光壽命是熒光基團...
熒光壽命顯微成像(Fluorescence lifetime imaging microscopy,FLIM)是熒光壽命測量和熒光顯微技術的結合,熒光壽命顯微成像具有高特異性、高靈敏度、可定量測量微環境變化和分子間相互作用、不受探針濃度、激發光強度和光漂白影響等優點。熒光壽命成像(FLIM)對細胞信號傳導及調控,蛋白間的相互作用等生物研究發揮著很大作用。利用熒光壽命成像顯微鏡技術可實現可以實時監控發光納米顆粒在活細胞內的穩定性。在過去的十年中,光學技術硬件和軟件、材料科學和生物醫學的迅速發展,共同促進了FLIM技術及其應用的巨大進步。將熒光壽命成像與共聚焦成像技術結合起來,實現人體三維熒光壽命...
為什么說熒光壽命成像FLIM相比于熒光強度成像更有優勢?通過熒光強度成像可以獲得熒光分子的空間分布,較為直接和簡便,但是當熒光分子具有相似的頻譜特性,或是同樣的熒光分子在不同環境下時,依賴強度進行成像的方案便無法準確反映信息。與基于光強的成像方式不同,熒光壽命成像FLIM適用于測量熒光分子環境的變化,或是測量分子的運動情況。其結果與熒光分子濃度無關,且不受影響光強的光散射或是光吸收影響,可以精確測量熒光淬滅過程,對生物分子微環境進行定量測量。熒光壽命成像可以用于無法控制局部探針濃度的熒光顯微鏡中。熒光壽命是熒光基團在通過發射熒光光子返回基態之前在其激發態下保持平均多長時間的量度。珠海熒光壽命成...
熒光壽命顯微成像(Fluorescence lifetime imaging microscopy,FLIM)是熒光壽命測量和熒光顯微技術的結合,熒光壽命顯微成像具有高特異性、高靈敏度、可定量測量微環境變化和分子間相互作用、不受探針濃度、激發光強度和光漂白影響等優點。熒光壽命成像(FLIM)對細胞信號傳導及調控,蛋白間的相互作用等生物研究發揮著很大作用。利用熒光壽命成像顯微鏡技術可實現可以實時監控發光納米顆粒在活細胞內的穩定性。在過去的十年中,光學技術硬件和軟件、材料科學和生物醫學的迅速發展,共同促進了FLIM技術及其應用的巨大進步。熒光壽命可以在頻域或者時間域測量。上海動物熒光壽命成像使用方...
熒光壽命成像有幾點優勢:1.不需要考慮跳色的影響,從而免去了計算和去除跳色雜質信號的麻煩;去除跳色雜質的準確性很大程度上依賴于信噪比、成像流程的設計和控制、以及跳色信號估算的算法,這些因素使得通過穩態光強度測量熒光壽命成像的精確度在很多時候受到質疑。2.穩態光強度的熒光壽命成像測量很容易受熒光標記光漂白或是激發光散射背景的影響,而這些因素對FLIM-FRET的測量影響相對較低。3.熒光壽命成像可以定量的區分參與FRET和沒有參與FRET的分子數量,這樣深入的定量分析是穩態光強度方法做不到的。生物發光與熒光成像相同點是都需要對細胞進行標記。湖北化學熒光壽命成像作為熒光成像中除光譜和強度之外的新維...
熒光壽命成像是什么?如果分子環境刺激激發態衰變而不發射光子,則熒光強度會降低(淬滅)。熒光淬滅是一條單獨的發射路徑,因此在動力學上與熒光過程形成競爭關系。激發態存儲現在可以通過一個以上的過程衰變,從而縮短熒光壽命。這種壽命的改變可用于收集分子環境的信息。一種特殊類型的淬滅是將激發能量以非輻射的方式傳遞到相鄰的不同熒光染料中:“熒光共振能量轉移”,FRET。此時,不只第1個熒光染料(供體)變暗,壽命變短,而且第二個熒光染料(受體)在“錯誤的”激發顏色下開始發光。由于這種效果的產生需要兩種熒光染料(小于10 nm)的密切接觸,因此將其用作研究分子相互作用的“分子標尺”。它也是許多現代FRET生物傳...
在基于時間相關單光子計數的熒光壽命成像實驗中,通過選用超快激光器可以優化脈沖持續時間,單光子探測器和時間數字轉換器的時間抖動則成為制約時間分辨率的關鍵參數。熒光壽命成像可進行高質量的多色成像實驗或實現STED、PALM/STORM等超分辨率熒光顯微成像。目前TCSPC是主要應用的熒光壽命測定技術。熒光壽命通常在ps~us量級,在如此短的時間量級上進行測量,它是較為成熟準確的測試手段。TCSPC的工作原理是使用一個同步信號源驅動激光器,出射光脈沖照射樣品池,在利用光子探測裝置(多為PMT)對熒光信號進行探測,每一個光子計數信號在FT1010中都會落入一個對應的時間窗口,經過一定時間的統計疊加后即...
熒光壽命成像與傳統的使用熒光強度和光譜信息作為鑒別組織異常的成像方式相比,壽命成像提供了更多的生化診斷信息。熒光壽命成像已用于骨骼和牙齒的診斷。另外,采用多光子激發可顯著提高組織體的成像深度,如對人體皮膚自體熒光進行多光子激發熒光壽命成像,成像深度達200 um,組織體的熒光壽命分布揭示了細胞代謝狀態的變化,可用于對皮膚病的診斷。對腔體中瘤的早期臨床診斷,已開發出具有實時及壽命分辨功能的內窺鏡,并對離體膀胱樣品進行測試,得到了黃素分子的自體熒光壽命圖像。熒光壽命成像技術是通過建立檢測到的熒光事件的直方圖來確定壽命。江蘇熒光壽命成像哪里買熒光壽命成像和生物發光的不同之處:產生光子的原理不同,類似...
在基于時間相關單光子計數的熒光壽命成像實驗中,通過選用超快激光器可以優化脈沖持續時間,單光子探測器和時間數字轉換器的時間抖動則成為制約時間分辨率的關鍵參數。熒光壽命成像可進行高質量的多色成像實驗或實現STED、PALM/STORM等超分辨率熒光顯微成像。目前TCSPC是主要應用的熒光壽命測定技術。熒光壽命通常在ps~us量級,在如此短的時間量級上進行測量,它是較為成熟準確的測試手段。TCSPC的工作原理是使用一個同步信號源驅動激光器,出射光脈沖照射樣品池,在利用光子探測裝置(多為PMT)對熒光信號進行探測,每一個光子計數信號在FT1010中都會落入一個對應的時間窗口,經過一定時間的統計疊加后即...
熒光壽命通常來講是一定的,不受激發光強度、熒光團濃度等因素的影響,只與熒光團所處的微環境有關,因此,利用熒光壽命顯微鏡(Fluorescence lifetime imaging microscopy, FLIM)對樣品進行熒光壽命成像,可以對樣品所在的微環境中的許多物理參數如氧壓、溶液疏水性等及生物化學參數如pH值、離子濃度等進行定量測量。此外,熒光壽命成像技術還可以同時獲得分子狀態和空間分布的信息。因此,熒光壽命成像在生物醫學領域有廣闊的應用前景。熒光壽命成像不受光漂白的影響。深圳生物熒光壽命成像價格表與熒光光譜一樣,熒光壽命也是熒光物質的一種內在特有性質,不受熒光物質濃度、激發光強度等因...
市場上熒光壽命的測量方式可分為時域法和頻域法,兩者在本質上是相通的,測量精度相近,頻域技術是時域法的傅里葉變換的延伸。時域和頻域技術在各種顯微壽命成像平臺中都有應用,時間相關單光子計數方法(TCSPC )是常見的時域技術,而新興的數字頻域技術(FastFLIM? )則取代了傳統的模擬頻域技術,憑借其獨恃的優勢成為應用廣的頻域技術。熒光壽命成像主要通過TCSPC技術(Time-Correlated Single Photon Counting)實現。由于TCSPC系統,一個激光脈沖只采集一個光子信號,所以激光器的重復頻率決定了系統的數據采集速度。重頻越高,采集速度越快,數據信噪比越好。測量熒光壽...
熒光壽命成像或FLIM是基于熒光樣品中不同區域的熒光的指數衰減速率的差異。由τ決定熒光壽命成像的每個像素的強度,這使研究人員可以查看具有不同熒光衰減率的材料之間的對比度,還可以產生顯示其他衰減路徑變化的圖像。可以通過使用脈沖源在時域中確定熒光壽命。當熒光物質被超短脈沖激發時,時間分辨的熒光將呈指數衰減。時間相關單光子計數(tcspc)通常被用作熒光壽命的測量方法,因為它補償了在源強度和單光子的脈沖幅度的變化。更具體地說,TCSPC由單個光子雪崩光電二極管(SPAD)記錄相對于激發激光脈沖的單個光子的壽命。重復記錄多個激光脈沖,并在記錄了足夠多的事件后,研究人員能夠建立所有這些記錄的時間點上事件...
熒光壽命成像在生物醫學研究和臨床診斷應用中的許多場合都對多光譜分辨提出特殊要求,如在FRET測量中,要求能同時測量供體和受體的熒光強度隨時間的衰減,多光譜分辨的熒光壽命成像提供了一種新的定量研究手段.目前,基于門控像增強器的多光譜寬場FLIM 技術一次只能獲得至多兩個譜段的熒光壽命圖像,而基于TCSPC的多光譜分辨FLIM的成像速度又很低,這些都限制了其應用范圍.目前的一個研究方向是,發展光譜分辨率高、成像速度快、價格低廉的多光譜分辨熒光壽命成像顯微技術。熒光壽命成像通常用于研究生物分子間相互作用、細胞中的信號事件或區分光譜重疊的熒光團。北京動物熒光壽命成像大概多少錢熒光壽命是熒光基團在通過發...
熒光壽命成像技術實時監控納米顆粒在細胞內的穩定性:利用熒光壽命成像顯微鏡技術可實現可以實時監控發光納米顆粒在活細胞內的穩定性。熒光壽命成像不但具有其它熒光顯微鏡所具有的高靈敏度、可檢測人體生物樣品等優點,它在監控熒光納米材料的穩定性上還具有以下幾個優勢:(1)熒光壽命不受熒光探針的濃度的影響,可排除納米材料的胞吐及細胞分化導致的納米顆粒的稀釋等對測量的影響;(2)很多常見的發光材料的熒光壽命都遠遠大于細胞的自熒光的壽命,很易去除生物自熒光對熒光成像的干擾;(3)發光材料的熒光壽命和其材料的穩定性密切相關,熒光壽命的改變可以靈敏地反映相應材料的化學穩定性。熒光壽命成像具有200 nm的空間分辨率...
熒光壽命可以在頻域或者時間域測量。時間域測量方法涉及用短光脈沖照射樣品(比色皿、細胞或組織),然后隨時間測量發射強度。FLT由衰減曲線的斜率確定。有幾種熒光檢測方法可用于壽命測量,其中時間相關單光子計數(TCSPC)可實現簡單的數據收集和增強的定量光子計數。頻域方法涉及高頻率入射光的正弦調制。在該方法中,發射發生在與入射光相同的頻率處,并且隨著激發光兼有相位延遲和振幅的變化(解調)。壽命測量不需要波長比率探針來提供眾多分析物的定量測定。壽命法通過使用光譜位移探針擴展了分析物濃度范圍的靈敏度。壽命測量可用于沒有直接探針的分析物。包括葡萄糖、抗原或基于熒光能量轉移轉導機制的任何親和力或免疫測定。熒...
熒光壽命通常來講是一定的,不受激發光強度、熒光團濃度等因素的影響,只與熒光團所處的微環境有關,因此,利用熒光壽命顯微鏡(Fluorescence lifetime imaging microscopy, FLIM)對樣品進行熒光壽命成像,可以對樣品所在的微環境中的許多物理參數如氧壓、溶液疏水性等及生物化學參數如pH值、離子濃度等進行定量測量。此外,熒光壽命成像技術還可以同時獲得分子狀態和空間分布的信息。因此,熒光壽命成像在生物醫學領域有廣闊的應用前景。光壽命成像顯微技術已在生命科學領域中得到了普遍的應用。北京植物熒光壽命成像哪里有賣熒光壽命是熒光團在發射熒光光子返回基態之前保持其激發態的平均時...
熒光壽命成像的原理:如果分子環境刺激激發態衰變而不發射光子,則熒光強度會降低(淬滅)。熒光淬滅是一條單獨的發射路徑,因此在動力學上與熒光過程形成競爭關系。激發態存儲現在可以通過一個以上的過程衰變,從而縮短熒光壽命。這種壽命的改變可用于收集分子環境的信息。一種特殊類型的淬滅是將激發能量以非輻射的方式傳遞到相鄰的不同熒光染料中:“熒光共振能量轉移”,FRET。此時,不只第1個熒光染料(供體)變暗,壽命變短,而且第二個熒光染料(受體)在“錯誤的”激發顏色下開始發光。由于這種效果的產生需要兩種熒光染料(小于10 nm)的密切接觸,因此將其用作研究分子相互作用的“分子標尺”。熒光壽命成像是什么樣的技術?...
時域法熒光壽命的測量和熒光壽命成像主要有時間相關單光子計數法(time correlated single photon counting, TCSPC)、門控探測法(time-gated detection)、條紋相機測量法(streak-FLIM)、頻閃技術等四種常見的方法。TCSPC是目前測量熒光壽命的主要技術,同軸脈沖光源發出的脈沖光引起起始光電倍增管產生電信號,該信號通過恒分信號甄別器1啟動時幅轉換器(time-amplitude converter,TAC),時幅轉換器產生一個隨時間線性增長的電壓信號。此外,同軸脈沖光源發出的脈沖光通過激發單色器后到達樣品池,樣品產生的熒光信號再經...