差圖像作為經(jīng)典、常勝不衰的動目標檢測方法,有其合理性,因為運動能夠?qū)е聢D像的變化,相鄰的兩幅或多幅圖像之間的關(guān)系,或當前圖像與背景圖像之間的關(guān)系,尤其是圖像差的關(guān)系,能較好地體現(xiàn)出運動所帶來的變化。復(fù)雜背景下的運動目標檢測和跟蹤由于有良好的應(yīng)用前景,成為當前研究的一個熱點。圖像監(jiān)控系統(tǒng)的出發(fā)點是監(jiān)控移動的目標,它們或是非法侵入,或是通過關(guān)鍵的場景,總之是移動才帶來了對它們實施監(jiān)控的可能。因此尋找移動的目標是圖像監(jiān)控的關(guān)鍵。慧視RK3399圖像處理板能實現(xiàn)24小時、無間隙信息化監(jiān)控。數(shù)據(jù)目標跟蹤推薦廠家
無人機能夠通過高空拍攝快速獲取大范圍、多角度的地面信息。但是傳統(tǒng)的攝像頭只能獲取視頻數(shù)據(jù),對于許多需要進行數(shù)據(jù)分析的行業(yè)來說顯然不夠智能化,從無人機視頻數(shù)據(jù)中快速獲取提煉大量有價值的信息,不僅能夠提升工作效率,還能夠減少不小的成本支出。這就是無人機的AI識別能力。通過識別算法,在無人機工作時就對目標范圍進行AI檢測識別,從而提煉所需信息。這就需要對無人機進行智能化改造,可以在傳統(tǒng)無人機吊艙中植入成都慧視開發(fā)的高性能AI圖像處理板,如利用RK3588深度開發(fā)而成的Viztra-HE030圖像處理板,6.0TOPS的算力能夠快速處理無人機識別到的復(fù)雜畫面信息,這樣就有了硬件基礎(chǔ),剩下的就需要對自身算法進行不斷優(yōu)化提升。無源目標跟蹤多少錢慧視光電開發(fā)的慧視AI圖像處理板,采用了國產(chǎn)高性能CPU。

YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進行目標檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實時應(yīng)用。準確性較高:通過引入先進的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標定位和類別預(yù)測方面具有較高的準確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標,并保持對小目標的有效檢測。端到端訓(xùn)練:YOLO算法可以進行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實現(xiàn)和使用。
小興安嶺的日常巡護,是構(gòu)筑東北生態(tài)安全的必要措施,進入冬季,整個小興安嶺將處于冰雪覆蓋,按照傳統(tǒng)的巡檢模式,危險且費力。整個小興安嶺森林覆蓋率達到96%,只靠肉眼的觀察,很容易錯過死角空白區(qū)的潛在危險,因此,無人機上線了。將無人機智能化,在吊艙的基礎(chǔ)上加裝具備智能圖像處理的板卡,再通過定制算法的植入,一個智慧“巡檢員”就上線了。面對大森林這樣復(fù)雜的環(huán)境,成都慧視開發(fā)的高性能AI圖像處理板Viztra-HE030可以勝任,這塊板卡采用了瑞芯微旗艦級芯片RK3588,能夠輸出6.0TOPS的算力,考慮到小興安嶺冬天寒冷的環(huán)境,這款板卡能夠適應(yīng)零下40℃的環(huán)境,長時間的戶外工作不在話下。AI算法賦能下的圖像處理板能夠進行目標識別。

無人機在農(nóng)業(yè)領(lǐng)域能夠?qū)崿F(xiàn)高效率的施肥、播種等操作。但是不同的作業(yè)環(huán)境對于無人機的工作性能要求不一樣,同樣的方案在平原地區(qū)適用,在高原地區(qū)就不行。因此針對于特殊作業(yè)環(huán)境需要制定不同的智慧化方案。像青藏高原這樣地貌復(fù)雜、低氣壓、大溫差的特點,參與智能化工作的各個部件需要符合這樣作業(yè)環(huán)境特點的性能要求。不比平原的一馬平川,高原由于環(huán)境復(fù)雜,地形起伏對于無人機的飛行也需要進行控制,無論是高度還是速度甚至距離都需要進行嚴格限制,防止出現(xiàn)撞機等事故。因此,這個方面的智慧化建設(shè)就需要無人機具備智能避障的功能,無人機需要在高速度或者遠距離的情況下識別樹木、電線桿、石頭等障礙物,并能夠?qū)崿F(xiàn)避障。RK3399PRO圖像處理板識別概率超過85%。海南低壓線目標跟蹤
慧視RK3588板卡可以用于大型公共停車場。數(shù)據(jù)目標跟蹤推薦廠家
從軟件的角度來看,整個視頻跟蹤系統(tǒng)主要是由電視攝像機及控制、圖像獲取模塊、圖像顯示模塊、數(shù)據(jù)庫,運動檢測,目標跟蹤,報警輸入和人機接口模塊等組成的。視覺計算模塊是視頻跟蹤系統(tǒng)的重點,是實現(xiàn)目標檢測和跟蹤的關(guān)鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標的檢測和跟蹤是緊密結(jié)合的。檢測是跟蹤的前因,并為跟蹤提供了目標的信息(如目標的位置,大小,模式和速度估計等),而跟蹤則是檢測的延續(xù),實時利用檢測得到的知識去驗證目標的存在。數(shù)據(jù)目標跟蹤推薦廠家