在數字化和信息化快速發展的背景下,圖書館作為知識與信息的重要傳遞者,亟須革新服務方式。因此,智慧圖書館的概念應運而生,旨在通過高科技手段,如人工智能(artificialintelligence,AI),提升服務效率和用戶體驗。智慧圖書館不僅是傳統圖書館的延伸,還是信息技術與圖書館服務深度融合的產物。AI在信息檢索、用戶行為分析與個性化服務等方面,展現出巨大的潛力。當前,隨著用戶對信息服務需求的日益個性化和精細化,智慧圖書館需要提供更貼心和高效的閱讀推薦服務。因此,研究并實施基于AI的個性化閱讀推薦系統成為智慧圖書館發展的重要方向。這種系統不僅可以大幅提高圖書館的服務質量和運營效率,還能更好地滿足用戶的多樣化需求[1]。閱讀推薦服務是智 慧圖書館的服務之一,在海量信息中推送滿足用 戶需求的閱讀資源。技術科研學術助手標志

人機協同學習理論。人機協同學習理論是在計算機賦能深度學習的過程中逐漸發展起來的,旨在充分發揮人類智能和機器智能的**優勢,通過學習者與機器的智能交互、協同工作、對話協商和共同決策,促進學生的深度創新學習,重構智能時代的智慧學習新生態[15]。快速發展的智能技術幫助實現泛在化的學習情境感知、全景化的學習數據采集、精細化的學業診斷測評和個性化的學習服務供給,催生了精細、互助和多元的人機協同學習模式。一方面,機器能更好地理解學習者的認知狀態和學習需求,進而提供個性化的資源和服務;另一方面,人工智能對于計算機認知網絡的貢獻讓機器算法和模型更加精細深入,并有效支撐分布式學習者的社會認知和知識建構。尤其GenAI的快速發展催生出人機協同的智慧閱讀新范式。首先,GenAI作為效能工具降低認知負荷,如總結摘要、語義翻譯、資源推薦、制作概念圖。其次,GenAI提供即時性的閱讀測評與分析,例如自動生成閱讀理解問題,基于學習分析結果(如閱讀答題分析、注意力熱力圖、提問層級分布)推送個性化策略建議,形成閱讀畫像。***,GenAI扮演閱讀伙伴或認知**,通過提問和回答啟發學生深度思考。品質科研學術助手價格根據問題形式、認知層次、思維模式、答案特征 等標準進行分類。

智慧閱讀是AI技術賦能閱讀的初步探索,其潛力遠未被充分挖掘。隨著生成式人工智能、增強現實、腦機接口、生命科學等前端技術的不斷突破和落地應用,人類即將迎來超級閱讀時代。作為智慧閱讀的高級階段,超級閱讀并非智慧閱讀的簡單延續,而是通過更深層次的技術賦能,帶給讀者多模態交互增強的閱讀體驗,幫助讀者突破傳統的閱讀方式限制,提高閱讀效率,優化知識管理模式,甚至將閱讀過程與知識輸出、社會互動深度融合。技術創新主導的超級閱讀活動,其基本架構包括感知層、交互層和認知層,呈現全新的特征。
隨后進行數據清洗,剔除無效、錯誤或無關數據,保證數據質量。例如,異常的用戶行為記錄、重復的條目或格式錯誤的數據都需要清理。清洗后的數據需要轉換為適合分析的格式或結構,如分類數據編碼、連續變量規范化等。這是確保數據被分析工具正確理解和處理的關鍵。在數據分析階段,通過應用統計分析、機器學習算法等,從數據中挖掘用戶的興趣和行為模式。例如,通過分析用戶的搜索和下載歷史,預測其可能感興趣的新書或主題,進而實現真正的個性化推薦。3.2內容資源管理與標簽化個性化閱讀推薦系統設計的關鍵為內容資源管理與標簽化。智慧圖書館需把內容資源進行數字化管理,并給每本書籍、期刊、文章等都貼上標簽,這些標簽包括書籍的主題、作者、出版時間、閱讀難易程度等,從而對資源進行有效的分類及標簽化處理。當用戶請求推薦時,個性化閱讀推薦系統可迅速篩選出契合其需求的書籍或資源。同時,智慧圖書館還能按照讀者的反饋以及借閱頻率來調整資源標簽,使推薦精細水平提升。智慧館員是智慧圖書館閱讀推薦服務的提供者 和執行者,是兼具多方面知識與多樣技能的高素質綜 合性人才。

在智慧圖書館的個性化閱讀推薦系統實施中,用戶注冊與個性化設置是其提升用戶體驗和服務效率的關鍵環節。這不僅涉及用戶信息的收集和管理,還能通過個性化服務提高用戶滿意度和參與度。用戶首先需要在智慧圖書館系統中注冊賬戶,提供基本信息,如姓名、郵箱地址和所屬機構等。這些信息有助于智慧圖書館確認用戶的身份和背景,創建個性化賬戶。為確保用戶順利完成注冊,注冊流程應簡潔且用戶友好,避免煩瑣操作或侵犯隱私。完成注冊后,用戶將進入個性化設置環節,該環節為用戶提供了按個人興趣和需求定制系統體驗的機會。此類學習者在問題設計中傾向于遵循“信息提取—局部 關聯—簡單分析”的漸進路徑。品質科研學術助手價格
同時學生提出的問題能在一定程度上反映其認知活動層次,能有 效診斷和評估閱讀理解效能。技術科研學術助手標志
為了進一步提升個性化閱讀體驗,智慧圖書館還可以引入智能推薦系統。這些系統利用先進的算法模型,根據讀者的興趣模型自動匹配并推送相關資源。這些資源不僅限于傳統的紙質書籍,還包括學術論文、研究報告、電子書等多元化的學術資源。通過智能推薦系統,讀者可以輕松發現感興趣的內容,拓寬閱讀視野,提升閱讀體驗。此外,智慧圖書館還可以通過不斷優化算法模型,提高推薦的準確性和個性化程度。通過不斷收集并分析讀者的閱讀歷史、偏好、行為模式等多維度數據,智慧圖書館能夠訓練出更加精細的推薦算法。例如,智慧圖書館可以利用協同過濾算法,根據讀者以往的閱讀記錄和相似讀者的行為,為每位讀者量身定制推薦列表。同時,結合內容推薦算法,分析書籍的內容特征,將符合讀者興趣主題的書籍精細推送給讀者。技術科研學術助手標志