將模擬結(jié)果與實際曝光圖形對比,不斷修正模型參數(shù),使模擬預測的線寬與實際結(jié)果的偏差縮小到一定范圍。這種理論指導實驗的研究模式,提高了電子束曝光工藝優(yōu)化的效率與精細度??蒲腥藛T探索了電子束曝光與原子層沉積技術(shù)的協(xié)同應用,用于制備高精度的納米薄膜結(jié)構(gòu)。原子層沉積能實現(xiàn)單原子層精度的薄膜生長,而電子束曝光可定義圖形區(qū)域,兩者結(jié)合可制備復雜的三維納米結(jié)構(gòu)。團隊通過電子束曝光在襯底上定義圖形,再利用原子層沉積在圖形區(qū)域生長功能性薄膜,研究沉積溫度與曝光圖形的匹配性。在氮化物半導體表面制備的納米尺度絕緣層,其厚度均勻性與圖形一致性均達到較高水平,為納米電子器件的制備提供了新方法。電子束曝光支持深空探測系統(tǒng)在極端環(huán)境下的高效光能轉(zhuǎn)換方案。天津AR/VR電子束曝光工藝

針對電子束曝光在異質(zhì)結(jié)器件制備中的應用,科研團隊研究了不同材料界面處的圖形轉(zhuǎn)移規(guī)律。異質(zhì)結(jié)器件的多層材料可能具有不同的刻蝕選擇性,團隊通過電子束曝光在頂層材料上制備圖形,再通過分步刻蝕工藝將圖形轉(zhuǎn)移到下層不同材料中,研究刻蝕時間與氣體比例對跨材料圖形一致性的影響。在氮化物 / 硅異質(zhì)結(jié)器件的制備中,優(yōu)化后的工藝使不同材料層的圖形線寬偏差控制在較小范圍內(nèi),保證了器件的電學性能??蒲袌F隊在電子束曝光設備的國產(chǎn)化適配方面進行了探索。為降低對進口設備的依賴,團隊與國內(nèi)設備廠商合作,測試國產(chǎn)電子束曝光系統(tǒng)的性能參數(shù),針對第三代半導體材料的需求提出改進建議。通過調(diào)整設備的控制軟件與硬件參數(shù),使國產(chǎn)設備在 6 英寸晶圓上的曝光精度達到實用要求,與進口設備的差距縮小了一定比例。貴州光芯片電子束曝光加工電子束曝光在芯片熱管理領(lǐng)域?qū)崿F(xiàn)微流道結(jié)構(gòu)傳熱效率突破性提升。

研究所將電子束曝光技術(shù)應用于生物傳感器的微納電極制備中,探索其在跨學科領(lǐng)域的應用。生物傳感器的電極尺寸與間距會影響檢測靈敏度,科研團隊通過電子束曝光制備納米級間隙的電極對,研究間隙尺寸與生物分子檢測信號的關(guān)系。利用電化學測試平臺,對比不同電極結(jié)構(gòu)的檢測限與響應時間,發(fā)現(xiàn)納米間隙電極能明顯提升對特定生物分子的檢測靈敏度。這項研究展示了電子束曝光技術(shù)在交叉學科研究中的應用潛力,為生物醫(yī)學檢測器件的發(fā)展提供了新思路。圍繞電子束曝光的能量分布模擬與優(yōu)化,科研團隊開展了理論與實驗相結(jié)合的研究。通過蒙特卡洛方法模擬電子束在抗蝕劑與半導體材料中的散射過程,預測不同能量下的電子束射程與能量沉積分布,指導曝光參數(shù)的設置。
電子束曝光在超導量子比特制造中實現(xiàn)亞微米約瑟夫森結(jié)的精確布局。通過100kV加速電壓的微束斑(<2nm)在鈮/鋁異質(zhì)結(jié)構(gòu)上直寫量子干涉器件,結(jié)區(qū)尺寸控制精度達±3nm。采用多層PMMA膠堆疊技術(shù)配合低溫蝕刻工藝,有效抑制渦流損耗,明顯提升量子比特相干時間至200μs以上,為量子計算機提供主要加工手段。MEMS陀螺儀諧振結(jié)構(gòu)的納米級質(zhì)量塊制作依賴電子束曝光。在SOI晶圓上通過雙向劑量調(diào)制實現(xiàn)復雜梳齒電極(間隙<100nm),邊緣粗糙度<1nmRMS。關(guān)鍵技術(shù)包括硅深反應離子刻蝕模板制作和應力釋放結(jié)構(gòu)設計,諧振頻率漂移降低至0.01%/℃,廣泛應用于高精度慣性導航系統(tǒng)。電子束曝光實現(xiàn)核電池放射源超高安全性的空間封裝結(jié)構(gòu)。

研究所將電子束曝光技術(shù)應用于 IGZO 薄膜晶體管的溝道圖形制備中,探索其在新型顯示器件領(lǐng)域的應用潛力。IGZO 材料對曝光過程中的電子束損傷較為敏感,科研團隊通過控制曝光劑量與掃描方式,減少電子束與材料的相互作用對薄膜性能的影響。利用器件測試平臺,對比不同曝光參數(shù)下晶體管的電學性能,發(fā)現(xiàn)優(yōu)化后的曝光工藝能使器件的開關(guān)比提升一定幅度,閾值電壓穩(wěn)定性也有所改善。這項應用探索不僅拓展了電子束曝光的技術(shù)場景,也為新型顯示器件的高精度制備提供了技術(shù)支持。電子束曝光的成功實踐離不開基底處理、熱管理和曝光策略的系統(tǒng)優(yōu)化。天津納米電子束曝光外協(xié)
電子束曝光的圖形精度高度依賴劑量調(diào)控技術(shù)和套刻誤差管理機制。天津AR/VR電子束曝光工藝
在電子束曝光與材料外延生長的協(xié)同研究中,科研團隊探索了先曝光后外延的工藝路線。針對特定氮化物半導體器件的需求,團隊在襯底上通過電子束曝光制備圖形化掩模,再利用材料外延平臺進行選擇性外延生長,實現(xiàn)了具有特定形貌的半導體 nanostructure。研究發(fā)現(xiàn),曝光圖形的尺寸與間距會影響外延材料的晶體質(zhì)量,通過調(diào)整曝光參數(shù)可調(diào)控外延層的生長速率與形貌,目前已在納米線陣列的制備中獲得了較為均勻的結(jié)構(gòu)分布。研究所針對電子束曝光在大面積晶圓上的均勻性問題開展研究。由于電子束在掃描過程中可能出現(xiàn)能量衰減,6 英寸晶圓邊緣的圖形質(zhì)量有時會與中心區(qū)域存在差異,科研團隊通過分區(qū)校準曝光劑量的方式,改善了晶圓面內(nèi)的曝光均勻性。天津AR/VR電子束曝光工藝