蒸發物質的分子被電子撞擊后沉積在固體表面稱為離子鍍。蒸發源接陽極,工件接陰極,當通以三至五千伏高壓直流電以后,蒸發源與工件之間產生輝光放電。由于真空罩內充有惰性氬氣,在放電電場作用下部分氬氣被電離,從而在陰極工件周圍形成一等離子暗區。帶正電荷的氬離子受陰極負高壓的吸引,猛烈地轟擊工件表面,致使工件表層粒子和臟物被轟濺拋出,從而使工件待鍍表面得到了充分的離子轟擊清洗。隨后,接通蒸發源交流電源,蒸發料粒子熔化蒸發,進入輝光放電區并被電離。帶正電荷的蒸發料離子,在陰極吸引下,隨同氬離子一同沖向工件,當拋鍍于工件表面上的蒸發料離子超過濺失離子的數量時,則逐漸堆積形成一層牢固粘附于工件表面的鍍層。鍍膜層在真空條件下均勻附著于基材。廣東真空鍍膜工藝

LPCVD設備中的薄膜材料的質量和性能可以通過多種方法進行表征和評價。常見的表征和評價方法有以下幾種:(1)厚度測量法,是指通過光學或電子手段來測量薄膜的厚度,如橢圓偏振儀、納米壓痕儀、電子顯微鏡等;(2)成分分析法,是指通過光譜或質譜手段來分析薄膜的化學成分,如X射線光電子能譜(XPS)、二次離子質譜(SIMS)、原子發射光譜(AES)等;(3)結構表征法,是指通過衍射或散射手段來表征薄膜的晶體結構,如X射線衍射(XRD)、拉曼光譜(Raman)、透射電子顯微鏡(TEM)等;(4)性能測試法,是指通過電學或力學手段來測試薄膜的物理性能,如電阻率、介電常數、硬度、應力等。深圳真空鍍膜設備真空鍍膜過程中需嚴格控制電場強度。

電介質在集成電路中主要提供器件、柵極和金屬互連間的絕緣,選擇的材料主要是氧化硅和氮化硅等。氧化硅薄膜可以通過熱氧化、化學氣相沉積和原子層沉積法的方法獲得。如果按照壓力來區分的話,熱氧化一般為常壓氧化工藝,快速熱氧化等。化學氣相沉積法一般有低壓化學氣相沉積氧化工藝,半大氣壓氣相沉積氧化工藝,增強等離子體化學氣相層積等。在熱氧化工藝中,主要使用的氧源是氣體氧氣、水等,而硅源則是單晶硅襯底或多晶硅、非晶硅等。氧氣會消耗硅(Si),多晶硅(Poly)產生氧化,通常二氧化硅的厚度會消耗0.54倍的硅,而消耗的多晶硅則相對少些。這個特性決定了熱氧化工藝只能應用在側墻工藝形成之前的氧化硅薄膜中。
反應濺射是在濺射鍍膜中,引入某些活性反應氣體與濺射成不同于靶材的化合物薄膜。反應氣體有O2、N2、CH4等。反應濺射的靶材可以是純金屬,也可以是化合物,反應濺射也可采用磁控濺射。如氮化鋁薄膜可以采用磁控濺射鋁靶材,氣體通入一比一的氬氣和氮氣,反應濺射的優點是比直接濺射氮化鋁靶材時間更快。磁控濺射可改變工作氣體與氬氣比例從而進行反應濺射,例如使用Si靶材,通入一定比例的N2,氬氣作為工作氣體,而氮氣作為反應氣體,能得到SiNx薄膜。通入氧氣與氮氣從而獲得各種材料的氧化物與氮化物薄膜,通過改變反應氣體與工作氣體的比例也能對濺射速率進行調整,薄膜內組分也能相應調整。但反應氣體過量時可能會造成靶中毒。真空鍍膜能賦予材料特殊的光學性能。

LPCVD設備中較新的是垂直式LPCVD設備,因為其具有結構緊湊、氣體分布均勻、薄膜厚度一致、顆粒污染少等優點。垂直式LPCVD設備可以根據不同的氣體流動方式進行分類。常見的分類有以下幾種:(1)層流式垂直LPCVD設備,是指氣體從反應室下方進入,沿著垂直方向平行流動,從反應室上方排出;(2)湍流式垂直LPCVD設備,是指氣體從反應室下方進入,沿著垂直方向紊亂流動,從反應室上方排出;(3)對流式垂直LPCVD設備,是指氣體從反應室下方進入,沿著垂直方向循環流動,從反應室下方排出。衡量沉積質量的主要指標有均勻度、臺階覆蓋率、溝槽填充程度。深圳真空鍍膜設備
降低PVD制備薄膜的應力,可以提高襯底溫度,有利于薄膜和襯底間原子擴散,并加速反應過程。廣東真空鍍膜工藝
衡量沉積質量的主要指標有以下幾項:指標就是均勻度。顧名思義,該指標就是衡量沉積薄膜厚度均勻與否的參數。薄膜沉積和刻蝕工藝一樣,需將整張晶圓放入沉積設備中。因此,晶圓表面不同角落的沉積涂層有可能厚度不一。高均勻度表明晶圓各區域形成的薄膜厚度非常均勻。第二個指標為臺階覆蓋率(StepCoverage)。如果晶圓表面有斷層或凹凸不平的地方,就不可能形成厚度均勻的薄膜。臺階覆蓋率是考量膜層跨臺階時,在臺階處厚度損失的一個指標,即跨臺階處的膜層厚度與平坦處膜層厚度的比值。廣東真空鍍膜工藝