電子束蒸發蒸鍍如鎢(W)、鉬(Mo)等高熔點材料,需要在坩堝的結構上做一定的改進。高熔點的材料采用錠或者顆粒狀放在坩堝當中,因為水冷坩堝導熱過快,材料難以達到其蒸發的溫度。經過實驗的驗證,蒸發高熔點的材料可以用薄片來蒸鍍,將1mm材料薄片架空于碳坩堝上沿,薄片只能通過坩堝邊沿來導熱,散熱速率慢,有利于達到蒸發的熔點。采用此方法可滿足蒸鍍50nm以下的材料薄膜。PVD(氣相沉積)鍍膜技術主要分為三類,真空蒸發鍍膜、真空濺射鍍和真空離子鍍膜。對應于PVD技術的三個分類,相應的真空鍍膜設備也就有真空蒸發鍍膜機、真空濺射鍍膜機和真空離子鍍膜機這三種。近十多年來,真空離子鍍膜技術的發展是快的,它已經成為當今先進的表面處理方式之一。我們通常所說的PVD鍍膜,指的就是真空離子鍍膜;通常所說的PVD鍍膜機,指的也就是真空離子鍍膜機。鍍膜層能有效隔絕環境中的有害物質。金華來料真空鍍膜

衡量沉積質量的主要指標有以下幾項:指標就是均勻度。顧名思義,該指標就是衡量沉積薄膜厚度均勻與否的參數。薄膜沉積和刻蝕工藝一樣,需將整張晶圓放入沉積設備中。因此,晶圓表面不同角落的沉積涂層有可能厚度不一。高均勻度表明晶圓各區域形成的薄膜厚度非常均勻。第二個指標為臺階覆蓋率(StepCoverage)。如果晶圓表面有斷層或凹凸不平的地方,就不可能形成厚度均勻的薄膜。臺階覆蓋率是考量膜層跨臺階時,在臺階處厚度損失的一個指標,即跨臺階處的膜層厚度與平坦處膜層厚度的比值。合肥真空鍍膜加工反應氣體過量就會導致靶中毒。

對于PECVD如果成膜質量差,則主要由一下幾項因素造成:1.樣片表面清潔度差,檢查樣品表面是否清潔。2.工藝腔體清潔度差,清洗工藝腔體。3.樣品溫度異常,檢查溫控系統是否正常,校準測溫熱電偶。4.膜淀積過程中壓力異常,檢查腔體真空系統漏率。5.射頻功率設置不合理,檢查射頻電源,調整設置功率。影響PECVD工藝質量的因素主要有以下幾個方面:1.起輝電壓:間距的選擇應使起輝電壓盡量低,以降低等離子電位,減少對襯底的損傷。2.極板間距和腔體氣壓:極板間距較大時,對襯底的損傷較小,但間距不宜過大,否則會加重電場的邊緣效應,影響淀積的均勻性。反應腔體的尺寸可以增加生產率,但是也會對厚度的均勻性產生影響。3.射頻電源的工作頻率,射頻PECVD通常采用50kHz~13.56MHz頻段射頻電源,頻率高,等離子體中離子的轟擊作用強,淀積的薄膜更加致密,但對襯底的損傷也比較大。
電子束蒸發是目前真空鍍膜技術中一種成熟且主要的鍍膜方法,它解決了電阻加熱方式中鎢舟材料與蒸鍍源材料直接接觸容易互混的問題。同時在同一蒸發沉積裝置中可以安置多個坩堝,實現同時或分別蒸發,沉積多種不同的物質。通過電子束蒸發,任何材料都可以被蒸發,不同材料需要采用不同類型的坩堝以獲得所要達到的蒸發速率。電子束蒸發可以蒸發高熔點材料,比一般電阻加熱蒸發熱效率高、束流密度大、蒸發速度快,制成的薄膜純度高、質量好,通過晶振控制,厚度可以較準確地控制,可以廣泛應用于制備高純薄膜和各種光學材料薄膜。電子束蒸發的金屬粒子只能考自身能量附著在襯底表面,臺階覆蓋性比較差,如果需要追求臺階覆蓋性和薄膜粘附力,建議使用磁控濺射。鍍膜后的表面具有優良的反射性能。

介質薄膜是重要的半導體薄膜之一。它可用作電路間的絕緣層,掩蔽半導體主要元件的相互擴散和漏電現象,從而進一步改善半導體操作性能的可靠性;它還可用作保護膜,在半導體制程的環節生成保護膜,保護芯片不受外部沖擊;或用作隔離膜,在堆疊一層層元件后進行刻蝕時,防止無需移除的部分被刻蝕。淺槽隔離(STI,ShallowTrenchIsolation)和金屬層間電介質層(就是典型的例子。沉積材料主要有二氧化硅(SiO2),碳化硅(SiC)和氮化硅(SiN)等。薄膜應力的起源是薄膜生長過程中的某種結構不完整性(雜質、空位、晶粒邊界、錯位等)、表面能態的存在等。貴州真空鍍膜實驗室
真空鍍膜過程中需防止塵埃污染。金華來料真空鍍膜
磁控濺射方向性要優于電子束蒸發,但薄膜質量,表面粗糙度等方面不如電子束蒸發。但磁控濺射可用于多種材料,適用性廣,電子束蒸發則只能用于金屬材料蒸鍍,且高熔點金屬,如W,Mo等的蒸鍍較為困難。所以磁控濺射常用于新型氧化物,陶瓷材料的鍍膜,電子束則用于對薄膜質量較高的金屬材料沉積源是真空鍍膜技術中另一個必不可少的設備。襯底支架是用于在沉積過程中將襯底固定到位的裝置。基板支架可以有不同的配置,例如行星式、旋轉式或線性平移,具體取決于應用要求。沉積源的選擇取決于涂層應用的具體要求,例如涂層材料、沉積速率和涂層質量。金華來料真空鍍膜