LPCVD設備中還有一個重要的工藝參數是氣體前驅體的流量,因為它也影響了反應速率、反應機理、反應產物、反應選擇性等方面。一般來說,流量越大,氣體在反應室內的濃度越高,反應速率越快,沉積速率越高;流量越小,氣體在反應室內的濃度越低,反應速率越慢,沉積速率越低。但是,并不是流量越大越好,因為過大的流量也會帶來一些不利的影響。例如,過大的流量會導致氣體在反應室內的停留時間縮短,從而降低沉積效率或增加副產物;過大的流量會導致氣體在反應室內的流動紊亂,從而降低薄膜的均勻性或質量;過大的流量會導致氣體前驅體之間或與襯底材料之間的競爭反應增加,從而改變反應機理或反應選擇性。薄膜中存在的各種缺陷是產生本征應力的主要原因,這些缺陷一般都是非平衡缺陷,但需要外界給予活化能。江蘇EB真空鍍膜

對于PECVD如果成膜質量差,則主要由一下幾項因素造成:1.樣片表面清潔度差,檢查樣品表面是否清潔。2.工藝腔體清潔度差,清洗工藝腔體。3.樣品溫度異常,檢查溫控系統是否正常,校準測溫熱電偶。4.膜淀積過程中壓力異常,檢查腔體真空系統漏率。5.射頻功率設置不合理,檢查射頻電源,調整設置功率。影響PECVD工藝質量的因素主要有以下幾個方面:1.起輝電壓:間距的選擇應使起輝電壓盡量低,以降低等離子電位,減少對襯底的損傷。2.極板間距和腔體氣壓:極板間距較大時,對襯底的損傷較小,但間距不宜過大,否則會加重電場的邊緣效應,影響淀積的均勻性。反應腔體的尺寸可以增加生產率,但是也會對厚度的均勻性產生影響。3.射頻電源的工作頻率,射頻PECVD通常采用50kHz~13.56MHz頻段射頻電源,頻率高,等離子體中離子的轟擊作用強,淀積的薄膜更加致密,但對襯底的損傷也比較大。寧波鈦金真空鍍膜真空鍍膜過程中需精確控制氣體流量。

高頻淀積的薄膜,其均勻性明顯好于低頻,這時因為當射頻電源頻率較低時,靠近極板邊緣的電場較弱,其淀積速度會低于極板中心區域,而頻率高時則邊緣和中心區域的差別會變小。4.射頻功率,射頻的功率越大離子的轟擊能量就越大,有利于淀積膜質量的改善。因為功率的增加會增強氣體中自由基的濃度,使淀積速率隨功率直線上升,當功率增加到一定程度,反應氣體完全電離,自由基達到飽和,淀積速率則趨于穩定。5.氣壓,形成等離子體時,氣體壓力過大,單位內的反應氣體增加,因此速率增大,但同時氣壓過高,平均自由程減少,不利于淀積膜對臺階的覆蓋。氣壓太低會影響薄膜的淀積機理,導致薄膜的致密度下降,容易形成針狀態缺陷;氣壓過高時,等離子體的聚合反應明顯增強,導致生長網絡規則度下降,缺陷也會增加;6.襯底溫度,襯底溫度對薄膜質量的影響主要在于局域態密度、電子遷移率以及膜的光學性能,襯底溫度的提高有利于薄膜表面懸掛鍵的補償,使薄膜的缺陷密度下降。襯底溫度對淀積速率的影響小,但對薄膜的質量影響很大。溫度越高,淀積膜的致密性越大,高溫增強了表面反應,改善了膜的成分
涂敷在透明光學元件表面、用來消除或減弱反射光以達增透目的的光學薄膜。又稱增透膜。簡單的減反射膜是單層介質膜,其折射率一般介于空氣折射率和光學元件折射率之間,使用普遍的介質膜材料為氟化鎂。減反射膜的工作原理是基于薄膜干涉原理。入射光在介質膜兩表面反射后得兩束相干光,選擇折射率適當的介質膜材料,可使兩束相干光的振幅接近相等,再控制薄膜厚度,使兩相干光的光程差滿足干涉極小條件,此時反射光能量將完全消除或減弱。反射能量的大小是由光波在介質膜表面的邊界條件確定,適當條件下可完全沒有反射光或只有很弱的反射光。
鍍膜技術可用于制造高性能傳感器。

LPCVD設備中的薄膜材料在各個領域有著廣泛的應用。例如:(1)多晶硅薄膜在微電子和太陽能領域有著重要的應用,如作為半導體器件的源漏極或柵極材料,或作為太陽能電池的吸收層或窗口層材料;(2)氮化硅薄膜在光電子和微機電領域有著重要的應用,如作為光纖或波導的折射率匹配層或包層材料,或作為微機電系統(MEMS)的結構層材料;(3)氧化硅薄膜在集成電路和傳感器領域有著重要的應用,如作為金屬氧化物半導體場效應晶體管(MOSFET)的柵介質層或通道層材料,或作為氣體傳感器或生物傳感器的敏感層或保護層材料;(4)碳化硅薄膜在高溫、高功率、高頻率領域有著重要的應用,如作為功率器件或微波器件的基底材料或通道材料使用CVD的方式進行沉積氧化氮化硅(SiOxNy)與氮化硅(SiNx)能有效提高鈍化發射極和后極電池效率。遼寧叉指電極真空鍍膜
鍍膜層能明顯提升產品的抗輻射能力。江蘇EB真空鍍膜
通常在磁控濺射制備薄膜時,可以通過觀察氬氣激發產生的等離子體的顏色來大致判斷所沉積的薄膜是否符合要求,如若設備腔室內混入其他組分的氣體,則在濺射過程中會產生明顯不同于氬氣等離子體的暗紅色,若混入少量氧氣,則會呈現較為明亮的淡紅色。也可根據所制備的薄膜顏色初步判斷其成分,例如硅薄膜應當呈現明顯的灰黑色,而當含有少量氧時,薄膜的顏色則會呈現偏透明的紅棕色,含有少量氮元素時則會顯現偏紫色。氧化銦錫(ITO)是一種優良的導電薄膜,是由氧化銦和氧化錫按一定比例混合組成的氧化物,主要用于液晶顯示、觸摸屏、光學薄膜等方面。其中氧化銦和氧化錫的比例通常為90:10,當調節兩種組分不同比例時,也可以得到不同性能的ITO,ITO薄膜通常由電子束蒸發和磁控濺射制備,根據使用場景,在制備ITO薄膜的工藝過程中進行調控也可制得不同滿足需求的ITO薄膜江蘇EB真空鍍膜