冷鍛加工助力新能源船舶的輕量化與高效化發展。電動渡輪的螺旋槳軸采用**度鋁合金冷鍛制造,針對傳統鑄造工藝存在的氣孔、縮松等缺陷,冷鍛技術通過模具的高壓擠壓,使材料致密度達到 99.9%。在加工過程中,利用有限元模擬優化鍛造工藝參數,使軸的扭轉強度提升至 350MPa,同時重量較鋼制軸減輕 40%。冷鍛后的螺旋槳軸表面經微弧氧化處理,形成 20μm 厚的陶瓷膜層,耐海水腐蝕性能提高 5 倍。某內河電動渡輪搭載該冷鍛螺旋槳軸后,續航里程增加 25%,能耗降低 18%,有效推動了內河航運的綠色轉型。冷鍛加工的齒輪精度高、強度大,為機械傳動系統提供可靠保障。淮安空氣彈簧活塞冷鍛加工工藝視頻

冷鍛加工在模具制造行業為高精度模具鑲件生產提供了質量解決方案。注塑模具的精密鑲件采用冷作模具鋼冷鍛加工,由于鑲件形狀復雜、尺寸精度要求高,需先利用計算機模擬技術優化鍛造工藝參數。在冷鍛過程中,通過多工位級進模實現鑲件的逐步成型,尺寸公差控制在 ±0.002mm,表面粗糙度 Ra<0.1μm。冷鍛后的鑲件,內部組織均勻,碳化物分布細小彌散,硬度達到 HRC60,耐磨性比普通加工方式提高 3 倍。使用該冷鍛鑲件的注塑模具,生產的塑料制品尺寸精度可控制在 ±0.03mm,表面光潔度高,模具使用壽命延長至 50 萬次以上,有效降低了模具的生產成本與維護頻率。南京鍛件冷鍛加工生產廠家冷鍛加工的汽車轉向節,力學性能優異,保障車輛操控穩定性。

冷鍛加工在新能源儲能設備的電池連接片制造中確保電力傳輸穩定。鋰電池儲能系統的連接片采用銅合金冷鍛成型,為實現大電流穩定傳輸和低電阻連接,選用高導電率的銅合金材料。冷鍛時,通過多工位冷鍛機實現連接片的復雜形狀成型,尺寸精度控制在 ±0.01mm,表面粗糙度 Ra0.4μm。冷鍛后的連接片經鍍錫處理,接觸電阻降低至 5mΩ 以下。在儲能系統的充放電測試中,該冷鍛連接片能夠穩定承載 500A 的電流,溫升低于 20℃,且在 1000 次充放電循環后,連接性能無明顯衰減,有效保障新能源儲能設備的電力傳輸穩定性和安全性,提高儲能系統的整體性能和使用壽命。
冷鍛加工在航空航天的發動機葉片制造中為提高發動機性能提供了關鍵技術。航空發動機的小型葉片采用鈦合金冷鍛成型,鑒于葉片形狀復雜、精度要求高,需采用先進的冷鍛技術與設備。加工時,利用多軸聯動數控冷鍛機,通過分步鍛造與精確控制變形量,使葉片的型面精度控制在 ±0.01mm,葉尖厚度公差 ±0.005mm,表面粗糙度 Ra0.4μm。冷鍛后的葉片,內部金屬流線與氣流方向一致,氣動性能得到優化,同時表面形成殘余壓應力層,抗疲勞性能提高 40%。在發動機臺架試驗中,使用該冷鍛葉片的發動機,燃油消耗率降低 3%,推力提升 5%,有效提高了航空發動機的綜合性能。冷鍛加工的電動工具軸類零件,傳動效率高,運行穩定。

冷鍛加工在船舶行業的螺旋槳軸制造中適應了重載與高轉速的工作環境。船用螺旋槳軸采用高強度合金鋼冷鍛加工,考慮到螺旋槳軸在航行中承受巨大的扭矩與彎矩,選用屈服強度高、韌性好的鋼材。冷鍛時,通過大型冷鍛設備與**模具,使軸的直徑公差控制在 ±0.05mm,圓柱度誤差 ±0.01mm,表面粗糙度 Ra1.6μm。冷鍛后的螺旋槳軸,經熱處理與探傷檢測,抗拉強度達到 1200MPa,疲勞強度提高 30%。在船舶航行試驗中,該冷鍛螺旋槳軸能夠穩定傳遞 10000kW 的功率,在高轉速下運行平穩,振動幅值小于 0.5mm,有效保障了船舶的推進性能與航行安全。冷鍛加工使金屬表面光潔度提升,適用于航空航天高要求部件。淮安空氣彈簧活塞冷鍛加工工藝視頻
冷鍛加工強化金屬晶粒結構,增強零件的抗疲勞和耐磨性能。淮安空氣彈簧活塞冷鍛加工工藝視頻
冷鍛加工推動衛星互聯網的低軌衛星零部件制造向高精度發展。低軌衛星的太陽能電池板鉸鏈采用鋁合金冷鍛件,運用精密冷鍛工藝,在常溫下通過模具精確控制金屬流動,使鉸鏈的轉動部位尺寸精度達到 ±0.01mm,配合間隙 ±0.005mm。冷鍛后的鉸鏈經時效處理,抗拉強度提升至 350MPa,且重量較傳統加工方式減輕 25%。表面經特殊涂層處理,可抵御空間原子氧、紫外線等侵蝕。在衛星發射與在軌展開過程中,該冷鍛鉸鏈實現 100% 可靠展開,轉動角度誤差小于 ±0.1°,保障太陽能電池板正常發電,為衛星互聯網的穩定運行提供關鍵支持。淮安空氣彈簧活塞冷鍛加工工藝視頻