SpeedDP包含如下五個模塊:1.數據集管理:采集并制作用于訓練和測試的數據集;2.項目配置:根據項目的實際情況,對調整相關配置參數進行定制化開發;3.模型訓練:完成訓練參數配置,開始模型訓練并監控訓練過程,損失精度可接受時,暫停訓練;4.模型測試:使用數據集或實際業務場景圖像視頻數據進行模型評估;5.模型部署:模型測試結果達到預期,進行模型轉化和部署。據客戶反饋,使用了慧視光電的SpeedDP后,初步提升效率在80%以上,開發周期縮短,同時可售可租的模式,也讓企業的選擇更加靈活,為所在單位降本增效提供幫助。SmartDP只需要少量樣本即可。河北多系統適配圖像標注哪里買

隨著大模型時代到來,模型參數呈指數級增長,達到萬億級別。大模型逐漸從支持單一模態和任務發展為支持多種模態下的多種任務。在這種趨勢下,大模型訓練所需算力巨大,遠超單個芯片的處理速度,而多卡分布式訓練通信損耗巨大。如何提高硬件資源利用率,成為影響國產大模型技術發展和實用性的重要前提。成都慧視推出的AI訓練平臺SpeedDP就可以通過大量的數據注入,讓AI進行不斷的模型訓練,不斷地深度學習能夠讓AI更加聰明,為目標檢測、目標識別提供幫助。黑龍江企業圖像標注優勢SmartDP和SpeedDP哪個好?

多邊形標注能夠能夠幫助我們標注一些規則復雜的物體,如動物、人、車、建筑物等,與矩形標注框等方法相比,多邊形標注更能精確展示被標注物體的形狀、大小以及實時形態,通過大量的多邊形標注工作,能夠更好的幫助我們提高算法模型的準確性和魯棒性。傳統的多邊形標注方法中,標注者需要在物體的邊緣上依次單擊鼠標或使用繪圖工具,將點連接起來形成一個封閉的多邊形。標注的難度取決于被標注物體的復雜程度,相較于矩形框標注更加費時費力,如果遇到大量待標注目標,則極大地影響工作效率。
圖像識別技術的高價值應用就發生在你我身邊,例如視頻監控、自動駕駛和智能醫療等,而這些圖像識別進展的背后推動力是深度學習。深度學習的成功主要得益于三個方面:大規模數據集的產生、強有力的模型的發展以及可用的大量計算資源。對于各種各樣的圖像識別任務,精心設計的深度神經網絡已經遠遠超越了以前那些基于人工設計的圖像特征的方法。盡管到目前為止深度學習在圖像識別方面已經取得了巨大成功,但在它進一步廣泛應用之前,仍然有很多挑戰需要我們去面對。遇到的算法模型不常見怎么辦?

在很長一段時間內,傳統的糧庫害蟲檢查方法是依靠人工巡檢,用肉眼觀察,逐倉篩查的方法,這種方法覆蓋面不足且效率低下,篩查一次將耗費工作人員的大量時間精力。隨著技術的發展,AI化的篩查逐步采用,通過算法的AI識別實現自動化篩查。方法基于高像素高清攝像機,實時遠程監控糧庫,一旦發現害蟲就能夠立即向管理平臺發出告警,有效降低巡檢成本和壓力,提升工作效率。這之中,實現AI識別處理的傳感器同樣重要,面對復雜的糧庫環境,一個高性能能夠快速處理數據的圖像處理板是關鍵。特殊需求的算法定制怎么做?湖北安全圖像標注優勢
SpeedDP支持Yolo系列算法。河北多系統適配圖像標注哪里買
無人機在農業領域能夠實現高效率的施肥、播種等操作。但是不同的作業環境對于無人機的工作性能要求不一樣,同樣的方案在平原地區適用,在高原地區就不行。因此針對于特殊作業環境需要制定不同的智慧化方案。像青藏高原這樣地貌復雜、低氣壓、大溫差的特點,參與智能化工作的各個部件需要符合這樣作業環境特點的性能要求。不比平原的一馬平川,高原由于環境復雜,地形起伏對于無人機的飛行也需要進行控制,無論是高度還是速度甚至距離都需要進行嚴格限制,防止出現撞機等事故。因此,這個方面的智慧化建設就需要無人機具備智能避障的功能,無人機需要在高速度或者遠距離的情況下識別樹木、電線桿、石頭等障礙物,并能夠實現避障。河北多系統適配圖像標注哪里買