在無人機識別這個領域,應用十分廣,因此針對于這方面的教學必不可少。目前國產化的識別傳感器當屬瑞芯微的RK3588,因此許多院校都會選擇采用RK3588來進行教學,成都慧視開發的Viztra-HE030圖像處理板就是利用RK3588打造而成,能夠根據不同規格的相機深度定制接口。(不同接口的RK3588圖像處理板)如果院校想進一步節約時間提升效率,成都慧視還可以提供訓練學習設備的整套方案。在高性能Viztra-HE030圖像處理板的基礎上,根據需求幫助選擇合適的相機,并且針對算法這塊,我們能夠提供一個高效的深度學習算法開發平臺SpeedDP,這個平臺能夠通過大量的識別檢測算法模型訓練開發,實現對新數據集的快速AI自動圖像標注,一方面省去大量手動標注工作,另一方面幫助提升算法性能。Viztra-LE034圖像跟蹤板支持目標跟蹤識別目標(人、車)。江蘇電力應急目標跟蹤

另外,經典的跟蹤方法還有基于特征點的光流跟蹤,在目標上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統計得到目標的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應目標在運動中的形狀變化。本質上可以認為光流跟蹤屬于用特征點的來表征目標模型的方法。在深度學習和相關濾波的跟蹤方法出現后,經典的跟蹤方法都被舍棄,這主要是因為這些經典方法無法處理和適應復雜的跟蹤變化,它們的魯棒性和準確度都被前沿的算法所超越,但是,了解它們對理解跟蹤過程是有必要的,有些方法在工程上仍然有十分重要的應用,常常被當作一種重要的輔助手段。
當兩個圖像之間還有旋轉或比例變化時,往往使用基于控制點的方法進行圖像配準。所謂特征點匹配就是在一幀圖像中尋找具有不變性質的結構—特征點,例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點作匹配,從而求得該兩幀圖像之間的變換關系。從現實的觀點看,在全部特征點中,只有部分能得到正確的匹配,這是因為特征點尋找算法并非完美無缺。特征點匹配方法具有:處理的數據量不斷減少、可能匹配的數目少于互相關方法和受照度、幾何的變化影響較小的優點。根據具體的振動情況,選擇合適的特征點和速度較快的匹配策略是該任務研究的重點。目前的研究工作都致力于圖像間的自動配準,如直接相關匹配,基于圖像分割技術的配準,利用封閉輪廓的形心作為控制點的配準等。RV1126圖像處理板識別概率超過85%。

序列圖像的差異通常是運動目標檢測和跟蹤的出發點,認為目標的運動是圖像差異的根本原因。但是,這是建立在背景本身不運動的前提下的。因此,在許多跟蹤系統中,比如車載,由于車的振動導致傳感器位置的變化,表現在圖像上就是背景的運動,因此在做差圖像和背景自動更新之前,都必須先經過配準,即讓所有圖像在都同一個坐標系之下,以消除背景的運動。在不同的應用場合,配準的方法多種多樣,比如當兩個圖像之間只有平移變化時,計算出它們的平移量即可實現配準;由于平移變化對圖像的相位信息影響較大,在頻率域利用相位相關可以實現配準。智能化的圖像處理板還可以實現自動化的數據分析,實現降本增效。附近目標跟蹤應用
慧視RK3588圖像跟蹤板支持目標跟蹤識別目標(人、車)。江蘇電力應急目標跟蹤
利用圖像處理技術實現導彈的遠程打擊是一項運用了比較長時間的技術,相比于現代化的電子控制,它具備低受干擾的特點,特別是無人機在軍備領域的廣泛應用,圖像處理的作用重新受到重視。遠程打擊時,需要對整個彈的識別能力進行深度學習訓練,不斷的訓練能夠讓AI更加聰明,讓AI知道該打擊什么,從而提升打擊精度。在前期的試驗印證階段,需要進行大量反復的試驗訓練,通過在導彈前端植入導引頭,給導彈裝上眼睛,可以實時記錄導彈打出后的視頻畫面,然后將大量的視頻數據采集到一起用于分析改進。江蘇電力應急目標跟蹤