設計要素壓力控制范圍:氧化物/硫化物體系需10-50MPa,聚合物體系需0.1-1MPa均壓設計:采用多活塞并聯結構或液壓均壓板,公差<±5%動態調節:集成壓力傳感器+伺服系統,實現充放電過程中的實時補償界面優化電極接觸:鍍金銅基板(表面粗糙度Ra<0.8μm)嵌入式銦箔緩沖層(厚度0.05-0.1mm)熱管理:內置微流道(耐蝕鈦合金),控溫精度±0.5℃安全防護多層防爆結構:陶瓷絕緣層(Al?O?)+ 不銹鋼約束環氬氣密封腔體,配備壓力釋放閥適配微米級電極的精密測試模具。太原氧化物固態電池測試模具廠家

手動加壓模具:缺點 :加壓精度有限 :依賴人工手動施加壓力,難以精確控制壓力的大小和穩定性,加壓精度一般較低,且隨著時間的推移和操作人員的疲勞程度增加,壓力的一致性難以保證,可能影響測試結果的準確性。效率低下 :手動加壓速度慢,對于多個樣品的測試,需要反復進行手動操作,耗時費力,測試效率較低,不適用于大規模生產或高通量測試。勞動強度大 :需要操作人員持續施加較大的力量,特別是在進行長時間的測試時,容易導致操作人員疲勞,甚至可能引發操作失誤。壓力均勻性差 :手動加壓時,壓力可能集中在局部區域,導致模具內的壓力分布不均勻,影響電池內部材料的接觸效果,進而降低電池的性能和一致性。重慶三電極固態電池測試模具廠家直銷高機械強度固態電池測試模具,耐反復使用。

軟包式固態電池測試模具結構特點:采用鋁塑膜或金屬殼封裝,可兼容較大面積(10-100cm2)的電極與電解質,支持手動或自動化封裝,具備一定的壓力調節能力(通過外部夾具施加0-20MPa壓力),密封性能優于紐扣模具(適合對水分/氧氣敏感的體系,如硫化物電解質)。適用場景:中試工藝模擬:接近實際軟包電池的生產形態,用于評估“大面積電極-電解質”的界面接觸均勻性、封裝工藝(如熱壓溫度、壓力)對性能的影響,適合工藝優化階段。中等規模性能評估:測試較高容量(Ah級)電芯的循環壽命(高倍率下)、倍率性能(接近實際應用場景)、界面穩定性(長期充放電后界面阻抗變化)。柔性體系測試:尤其適合聚合物基固態電池(柔性較好),可評估其在彎曲、形變下的性能衰減,模擬柔性電子設備的應用場景。
選擇適合的固態電池測試模具需結合測試目標、電池特性、環境需求及實際操作場景綜合判斷,確保模具能準確匹配測試需求,同時保證數據可靠性與操作效率。根據測試需求,聚焦以下關鍵性能,確保模具能穩定輸出可靠數據:溫度適配范圍根據測試溫度需求選擇模具的耐溫能力:常溫測試(25±5℃):普通模具(塑料/橡膠密封件,耐溫-20~80℃)即可。高低溫循環(-40~120℃):需耐高低溫材料(如氟橡膠密封、不銹鋼結構),且避免部件因熱脹冷縮導致密封失效。高溫長循環(>150℃):需全金屬密封(如激光焊接)+陶瓷絕緣(避免塑料/橡膠熔化)。適用于高能量密度電池的測試模具。

固態電池測試模具的設計需圍繞固態電池的特性(如依賴界面緊密接觸、對環境敏感等)展開,功能包括:組件準確固定:確保正極、固態電解質、負極的對齊與貼合,避免因位移導致的界面接觸不良(固態電池的離子傳導高度依賴電極-電解質界面的緊密接觸)。密封與環境隔離:隔絕空氣、水分(部分固態電解質如硫化物易水解)、雜質,防止其對電池材料(如鋰金屬負極、敏感電解質)的腐蝕或性能干擾。環境參數調控:模擬實際使用中的溫度(-40~150℃)、壓力(0~50MPa)等條件,評估電池在極端環境下的穩定性。測試接口集成:預留電極引出端,方便連接電化學工作站、充放電測試儀等設備,實現阻抗、循環壽命、倍率性能等參數的測量。高精度固態電池測試模具,適用于多種電芯結構驗證。石家莊硫化物固態電池測試模具多少錢
適用于疊片與卷繞結構的固態電池測試模具。太原氧化物固態電池測試模具廠家
壓力控制系統:模擬真實工況:壓力范圍與精度需求匹配:基礎研究可選0–15T低壓范圍;產業化驗證需24T–30T(如模擬汽車碰撞擠壓測試)。穩定性:壓力波動應≤1MPa/10min,避免數據漂移。加壓方式螺栓/彈簧機械式:成本低,適合固定壓力場景(如教學)。氣動/液壓式:壓力連續可調、精度高(±0.05%FS),支持實時監控,適合科研與失效分析。建議:精密研究選液壓/氣動系統,輔以集成壓力傳感器。尺寸與兼容性:適配不同電池規格模具腔體直徑:覆蓋φ8mm(紐扣電池)至φ25mm(小型軟包),需匹配電池尺寸。多規格模組(如10mm/16mm/25mm)可提升靈活性。有效空間要求:壓力機有效空間需>電池尺寸(如160×160×150mm),避免干涉。示例:φ20mm硫化物電池需選25mm腔體模具,預留膨脹空間。太原氧化物固態電池測試模具廠家