生產工藝:原材料準備:通常選用質優的熱軋盤條作為原料,這些盤條需符合相關國家標準,具有穩定的化學成分和良好的物理性能,為后續的冷軋加工提供堅實基礎。例如,常見的 Q235、Q345 等牌號的熱軋盤條,因其碳含量和合金元素含量的合理配比,能在冷軋過程中展現出良好的加工性能和較終產品性能。冷軋減徑:熱軋盤條依次通過多組冷軋輥進行連續冷軋,在冷軋過程中,鋼筋的直徑逐漸減小,其內部組織結構也發生相應變化。每道冷軋工序的壓下量都經過精確控制,以確保鋼筋在減徑的同時,能夠獲得預期的強度和塑性。運輸過程中需捆扎牢固,避免變形或肋部損傷。奉賢區螺紋鋼冷軋帶肋鋼筋強度
一定的塑性和韌性伸長率指標:盡管冷軋帶肋鋼筋經過冷軋加工后,其塑性相對于熱軋鋼筋有所降低,但仍具有一定的伸長率。例如,CRB550 級冷軋帶肋鋼筋的伸長率(δ10)不小于 8%,這一指標保證了鋼筋在承受一定變形時不會發生突然斷裂。在建筑結構受到地震、風荷載等動態荷載作用時,鋼筋能夠通過自身的變形吸收能量,從而保護結構不發生脆性破壞。在地震模擬試驗中,采用冷軋帶肋鋼筋配筋的混凝土框架結構,在經歷較大變形后,結構仍能保持一定的承載能力,展現出良好的抗震性能。低溫韌性:在一些寒冷地區,建筑材料的低溫韌性尤為重要。冷軋帶肋鋼筋在低溫環境下仍能保持一定的韌性,不易發生脆斷。相關研究表明,在 - 20℃的低溫條件下,冷軋帶肋鋼筋的沖擊韌性仍能滿足建筑結構的使用要求。這使得冷軋帶肋鋼筋在寒冷地區的建筑工程中得到廣泛應用,如北方地區的住宅、橋梁等建筑結構。閔行區d8冷軋帶肋鋼筋網片生產過程中需嚴格控制壓下率(通常≥40%),以確保強度和塑性平衡。

在現代建筑工程中,鋼筋作為關鍵的結構材料,對建筑物的安全性與穩定性起著決定性作用。冷軋帶肋鋼筋憑借其獨特的性能和明顯的優勢,在建筑領域得到了日益廣泛的應用。它不僅為各類建筑結構提供了可靠的強度支撐,還在節約資源、降低成本等方面展現出巨大潛力,成為推動建筑行業可持續發展的重要力量。冷軋帶肋鋼筋是用熱軋盤條經多道冷軋減徑,一道壓肋并經消除內應力后形成的一種帶有二面或三面月牙形橫肋的鋼筋。其表面的肋紋是通過特定的軋制工藝形成,與混凝土之間能產生強大的機械咬合力,從而有效增強鋼筋與混凝土協同工作的能力。這種獨特的表面形態和加工工藝,賦予了冷軋帶肋鋼筋區別于普通鋼筋的優異性能。
原材料的檢驗:在盤條進廠后,應按照規定的抽樣比例進行檢驗。除了檢驗化學成分外,還需對盤條的力學性能進行測試,包括抗拉強度、屈服強度、伸長率等指標。通過拉伸試驗,檢測盤條的抗拉強度和屈服強度是否滿足生產冷軋帶肋鋼筋的要求。對于每批進廠的盤條,抽樣數量一般不少于 3 盤,從每盤中截取規定長度的試樣進行檢驗。若發現某盤盤條的性能指標不符合要求,則應對該批盤條進行加倍抽樣檢驗,如仍不合格,則該批盤條不得用于生產冷軋帶肋鋼筋。冷軋工藝使鋼筋截面減縮約10%-15%,節省原材料并減輕結構自重。

與熱軋帶肋鋼筋對比強度方面:熱軋帶肋鋼筋常見的牌號有 HRB400、HRB500 等,其強度等級是根據屈服強度劃分。HRB400 的屈服強度標準值為 400MPa,HRB500 為 500MPa。而冷軋帶肋鋼筋如 CRB600H 的屈服強度標準值可達 540MPa,抗拉強度更高。在相同設計強度要求下,使用冷軋帶肋鋼筋可減少鋼筋用量。在一個建筑框架結構的設計中,若采用 HRB400 鋼筋,每平方米建筑面積的鋼筋用量約為 50kg,而采用 CRB600H 冷軋帶肋鋼筋,鋼筋用量可降低至約 40kg。塑性和韌性方面:熱軋帶肋鋼筋由于在高溫狀態下軋制,其內部組織結構均勻,具有較好的塑性和韌性。其表面粗糙度可達Ra≥10μm,明顯提升混凝土握裹力。上海冷軋帶肋鋼筋供應
表面油污需用中性清潔劑清理,避免影響后續涂裝或焊接。奉賢區螺紋鋼冷軋帶肋鋼筋強度
強高度:抗拉強度:冷軋帶肋鋼筋的抗拉強度明顯高于普通熱軋光圓鋼筋。以 CRB550 級冷軋帶肋鋼筋為例,其抗拉強度最小值可達 550MPa,而普通熱軋光圓鋼筋 HPB300 的抗拉強度標準值只為 300MPa。這種強高度特性使得在相同受力條件下,使用冷軋帶肋鋼筋能夠減少鋼筋的用量,從而降低結構的自重和成本。在建筑樓板的設計中,采用冷軋帶肋鋼筋作為受力主筋,可比使用普通鋼筋減少約 30% - 40% 的鋼筋用量。屈服強度:冷軋帶肋鋼筋的屈服強度也相對較高。如 CRB600H 級冷軋帶肋鋼筋,其屈服強度標準值可達 540MPa。較高的屈服強度使鋼筋在承受荷載時,能夠在較大的應力范圍內保持彈性變形,不易發生屈服破壞,從而提高了結構的安全性和可靠性。在地震頻發地區的建筑結構中,使用高屈服強度的冷軋帶肋鋼筋,能夠有效增強結構在地震作用下的抗震性能,減少結構的破壞程度。奉賢區螺紋鋼冷軋帶肋鋼筋強度