MIM技術在轉軸制造中具有諸多明顯優勢。首先是尺寸精度高,能夠制造出形狀復雜、精度要求高的轉軸。例如,在一些高精度的電子設備、醫療器械中使用的轉軸,其尺寸公差可以控制在極小的范圍內,滿足產品對高精度裝配和穩定運行的要求。其次是材料適用性廣,幾乎可以適用于所有種類的金屬粉末,包括不銹鋼、鈦合金、鎳基合金等。這使得制造商可以根據轉軸的不同使用環境和性能要求,選擇合適的金屬材料進行生產。再者,MIM技術可以實現近凈成型,減少了后續的機械加工工序,降低了生產成本和加工周期。同時,該技術生產的轉軸組織均勻、性能優異,具有良好的強度、硬度、耐磨性和耐腐蝕性,能夠保證轉軸在長期使用過程中保持穩定的性能。此外,MIM技術還具有生產自動化程度高、易于實現大規模生產等優點,能夠滿足市場對轉軸產品的大量需求。澤信研發可回收粘結劑體系,推動MIM行業綠色化發展。茂名異形復雜金屬粉末注射推薦廠家

脫脂和燒結是MIM工藝中技術難度比較高的環節,直接決定零件的密度、尺寸精度和力學性能。脫脂的目的是完全去除粘結劑,同時避免生坯開裂或變形。當前主流方法包括熱脫脂(在惰性氣體或真空環境中逐步升溫至400-600℃,使粘結劑分解揮發)和溶劑脫脂(將生坯浸泡在三氯乙烯等有機溶劑中,溶解部分粘結劑后進行熱脫脂)。熱脫脂雖效率較低(需10-20小時),但適用性廣;溶劑脫脂可縮短脫脂時間至2-5小時,但需處理有毒溶劑,且對粉末裝載量(通常<60%)限制較大。燒結階段則通過高溫(通常為金屬熔點的70%-90%)使粉末顆粒間發生擴散連接,實現致密化。例如,316L不銹鋼的燒結溫度為1350-1400℃,保溫時間2-4小時,配合氫氣氣氛還原表面氧化層,可獲得抗拉強度>520MPa、延伸率>30%的零件,性能接近鍛造材料。某汽車零部件廠商通過優化燒結曲線,將變速箱同步器齒環的收縮率波動從±0.3%控制在±0.1%以內,滿足了高精度傳動要求。汕尾金屬粉末注射加工廠家采用金屬粉末注射工藝制造的轉軸,可定制不同的長度與直徑規格,滿足多樣化設備安裝需求。

隨著5G、物聯網技術的普及,轉軸需向微型化、集成化方向發展。MIM工藝正探索納米粉末(粒徑<1μm)的應用,以進一步提升零件強度和表面質量。例如,采用氣霧化法制備的納米晶不銹鋼粉末,可使轉軸的屈服強度提升至1500MPa,同時將燒結溫度降低100℃,縮短生產周期。此外,多材料MIM技術(如金屬-陶瓷復合成型)可實現轉軸局部區域的硬度梯度控制,滿足復雜工況需求。然而,該技術仍面臨粉末成本高、模具壽命短等挑戰,需通過循環利用回收粉末、開發耐高溫模具材料等手段降低成本。據預測,到2028年,全球轉軸MIM市場規模將達12億美元,年復合增長率超過15%。
燒結是MIM工藝中實現零件致密化與性能提升的關鍵步驟。其原理是通過高溫(通常為金屬熔點的70%-90%)使粉末顆粒間發生擴散連接,消除孔隙并形成連續金屬基體。例如,316L不銹鋼的燒結溫度為1350-1400℃,保溫時間2-4小時,配合氫氣氣氛還原表面氧化層,可獲得抗拉強度>520MPa、延伸率>30%的零件,性能接近鍛造材料;鈦合金(Ti6Al4V)的燒結則需在真空或氬氣保護下進行,溫度控制在1250-1300℃,以避免晶粒粗化導致韌性下降。燒結后的零件可能需進行后處理以進一步提升性能:熱處理(如固溶+時效)可調整組織結構,提高硬度與耐磨性;表面處理(如拋光、噴砂、PVD鍍層)可改善外觀與耐腐蝕性。某汽車零部件廠商通過優化燒結曲線與后續深冷處理,將變速箱同步器齒環的疲勞壽命從10萬次提升至50萬次,滿足了高級車型的嚴苛要求。金屬粉末注射成型的轉軸,內部組織均勻細密,在高轉速運轉下依然保持良好的動平衡性能。

轉軸金屬粉末注射成型工藝流程主要包括喂料制備、注射成型、脫脂和燒結四個關鍵步驟。喂料制備是將金屬粉末與粘結劑在一定的溫度和壓力下混合均勻,形成具有良好流動性和穩定性的喂料。這一步驟對喂料的質量要求極高,因為喂料的性能直接影響到后續注射成型的質量。注射成型是將制備好的喂料通過注射成型機注入到模具型腔中,在高壓和高速的作用下,喂料充滿模具型腔并冷卻固化,形成轉軸的生坯。注射成型過程中需要精確控制注射壓力、溫度、速度等參數,以確保生坯的質量和尺寸精度。脫脂是將生坯中的粘結劑去除的過程,通常采用熱脫脂、溶劑脫脂或催化脫脂等方法。脫脂過程需要嚴格控制溫度和時間,避免生坯出現變形、開裂等缺陷。燒結是將脫脂后的生坯在高溫下進行加熱處理,使金屬粉末顆粒相互結合,形成致密的金屬零件。燒結溫度、時間和氣氛等參數對轉軸的性能有著重要影響,需要根據金屬材料的特性進行優化。東莞市澤信新材料科技為客戶提供金屬粉末注射定制服務,從設計到生產全程跟進。江蘇轉軸金屬粉末注射公司
澤信與高校聯合研發納米級粉末,目標將MIM精度提升至0.05mm級。茂名異形復雜金屬粉末注射推薦廠家
MIM工藝在環保和資源利用方面表現突出。首先,其材料利用率高(>95%),明顯減少金屬廢料產生。例如,制造航空發動機葉片時,MIM較傳統鍛造工藝可減少60%的原材料消耗。其次,MIM支持粉末回收利用,通過篩分和再生處理,回收粉末的性能(如流動性、粒徑分布)可恢復至新粉的90%以上,降低對原生金屬的依賴。此外,粘結劑體系在脫脂階段可通過熱解轉化為可燃氣體,用于燒結爐的能源補充,實現能源循環利用。在碳中和背景下,MIM工藝的單位產品碳排放較機加工降低35%,且通過采用綠色電力和低碳合金材料(如再生不銹鋼),可進一步將碳足跡減少至傳統工藝的1/3。隨著循環經濟理念的推廣,MIM技術正成為金屬零件制造領域實現可持續發展的關鍵路徑,其全球市場規模預計將以年復合增長率12%的速度增長,到2030年突破50億美元。茂名異形復雜金屬粉末注射推薦廠家