常見的粘結劑有聚丙烯(PP)、無規則聚丙烯(APP)、聚乙烯(PE)、乙烯一醋酸乙烯共聚體(EVA)、聚苯乙烯(PS)、丙烯酸系樹脂等。其中PE具有優異的成形性;EVA與其他樹脂的相溶性好,流動性、成形性也好;APP具有與其他樹脂相溶性好、富于流動性和脫脂性的特征;PS流動性好。助劑有蠟石石蠟、微晶石蠟、變性石蠟、天然石蠟、硬脂酸、配合劑等。成形材料的流動性可以使用高式流動點測定器和熔化分度器進行評價。當脫脂具有結合劑的含量多 時,則脫脂性有降低的傾向,助劑的石蠟多者,脫脂性好。如果有機材料在特定的溫度區域不能全部飛散掉,就會影響陶瓷的燒結,因此,需要考慮熱分解特性,加以選擇。江蘇中超金屬科技...
是將準備在其表面沉積一層瓷質薄膜的物質置于真空室中,加熱至一定溫度后,然后將預被覆瓷料的氣態化合物通過加熱載體的表面。在某一特定的溫度下,氣體與加熱基體的的表面接觸后,氣相發生分解反應,并將瓷料沉積于基體表面。晶粒隨產物的沉積不斷長大,直至形成致密多晶的結構。適當控制集體表面溫度和氣體流量可控制晶粒粗細。氣相沉積成瓷的速率比較慢,但可獲得質量極高的陶瓷膜。具有晶粒細小、高度致密、不透氣、高純度和高耐磨等 。用CVD法形成的瓷膜,具有晶粒定向的特征。即它雖然是多晶,但在晶粒成長時,幾乎都是按某一晶軸垂直于集體表面的方式生長。該特點對于介電性能或光學性能是有益的,但對于機械物理性能是不利的。控制成...
熱敏陶瓷材料熱敏陶瓷材料主要包括負溫度系數(NTC),正溫度系數(PTC)及具有臨界溫度的負溫度系數(CTR)三大類材料。前兩類熱敏電阻應用**廣,相對來說NTC熱敏電阻已有相當大的生產規模,技術也較完善,PTC熱敏陶瓷用途極為***,產品品種繁多,性能方面與國際水平的主要差距表現為高性能、穩定性、一致性等諸方面.這些差距正在縮小,為克服高溫PTC材料含鉛污染環境的缺點,NiO-ZnO-TiO2系新材料已經聞世,加熱溫度已達290℃,可望在溫度傳感,加熱及控制等方面獲得應用。看來,尋求無鉛新材料,進一步提高高溫PTC熱敏陶瓷性能,是一項有意義的工作。探索江蘇中超金屬科技的特種陶瓷技術,感受科技...
由清華大學材料科學與工程系楊金龍教授發明的CiM(陶瓷膠態注射成型方法及裝置)技術在國內該領域中處于**水平。陶瓷的注射成型技術有著諸多優點,用它制備復雜形狀的陶瓷元件,不僅產品尺寸精度高、表面條件好,而且省去了后加工操作,降低了生產成本,縮短了生產周期,還具有自動化程度高、適合于大規模生產的特點。該工藝一般包括下列步驟:陶瓷粉的選取、粘結劑的選取、陶瓷粉與粘結劑的均勻混合、注射成型、脫脂、燒結。其中脫脂是關鍵。起初的陶瓷成型注射技術是將大量的高分子樹脂與陶瓷粉體混練在一起后得到混合料,然后裝入注射機于一定溫度注入模具,迅速冷凝后脫模而制成坯體。該技術適合制備濕坯強度大,尺寸精度高,機械加工量...
陶瓷分離膜:它是一種固態膜,主要有兩部份構成,即膜支撐體及多孔膜。支撐體***采用含鋁量高的氧化鋁陶瓷。多孔膜主要由AL2O3,ZrO2,TiO2和SiO2等為主體構成。一般分離膜孔徑為:2~50nm,有時達微米級,其品種,規格日趨多樣化。分離膜通常具有化學穩定性好,能耐酸,耐堿,耐有機溶劑,機械強度高,耐磨性好,可反向沖洗;抗微生物能力強;耐高溫;孔徑分布范圍窄,分離效率高等特點。目前許多產品已在廢水處理、果汁生產、固液分離等方面獲得應用,可望在環境工程,石油化工,生物工程,冶金工業及納米粉料制備等眾多領域獲得廣泛應用,市場前景頗好,社會經濟效益顯著。當前陶瓷膜分離技術發展迅速,正向著介孔膜...
是將準備在其表面沉積一層瓷質薄膜的物質置于真空室中,加熱至一定溫度后,然后將預被覆瓷料的氣態化合物通過加熱載體的表面。在某一特定的溫度下,氣體與加熱基體的的表面接觸后,氣相發生分解反應,并將瓷料沉積于基體表面。晶粒隨產物的沉積不斷長大,直至形成致密多晶的結構。適當控制集體表面溫度和氣體流量可控制晶粒粗細。氣相沉積成瓷的速率比較慢,但可獲得質量極高的陶瓷膜。具有晶粒細小、高度致密、不透氣、高純度和高耐磨等 。用CVD法形成的瓷膜,具有晶粒定向的特征。即它雖然是多晶,但在晶粒成長時,幾乎都是按某一晶軸垂直于集體表面的方式生長。該特點對于介電性能或光學性能是有益的,但對于機械物理性能是不利的。控制成...
成型方面:特種陶瓷成型方法大體分為干法成型和濕法成型兩大類,干法成型包括鋼模壓制成型、等靜壓成型、超高壓成型、粉末電磁成型等;濕法成型大致可分為塑性成型和膠態澆注成型兩大類。近些年來膠態成型和固體無模成型技術在特種陶瓷的成型研究中也取得了較為快速的發展。陶瓷膠態成形是高分散陶瓷漿料的濕法成形,與干法成形相比,可以有效控制團聚,減少缺陷。無模成形實際上是快速原型制造技術(Rapidprototypingmanufacturingtechnology,RP&M)在制備陶瓷材料中的應用。特種陶瓷材料膠態無模成形過程是通過將含或不含粘結劑的陶瓷漿料在一定的條件下直接從液態轉變為固態,然后按照R特種陶瓷...
與普通熱等靜壓燒結相比,有如下優點:降低成本,無需投資大的熱等靜壓機,并取消了包套和剝套工序,所需氣體量比熱等靜壓燒結的要少;生產率高,適宜批量生產,采用特殊成型法,可生產異型制品,無需后續加工。熱等靜壓(HP)利用常溫等壓工藝與高溫燒結合的新技術,解決了普通壓中缺乏橫向壓力和制品密度不均勻的問題,并可使納米陶瓷的致密度進一步提高。所采用高溫等靜壓工藝,制備了納米結構的單相SiC及Si 3 N 4 / SiC復相陶瓷,在溫度為1850℃,壓力 200MPa條件下保溫1h,可獲得晶粒尺寸 100nm,結構均勻,致密的單相SiC納米結構陶瓷。在溫度在1750℃,壓力150MPa 條件下保溫1h...
易控制組成,能合成復合氧化物粉,添加微量成分方便,可獲得良好的均勻性等。溶劑蒸發添加沉淀劑熱分解1化學共沉淀法此法是在含有多種可熔性陽離子的鹽溶液中,通過加入沉淀劑形成不溶性氫氧化物,碳酸鹽或草酸等沉淀。然后溶劑或溶液中原有的陽離子濾出,沉淀物經過分解后即可制的高純度超細粉料。其可用于制備高純度的粉料。化學共沉淀法設備簡單,較為經濟,便于工業化生產。2溶膠—凝膠法此法是將醇鹽溶解于有機熔劑中,通過加入蒸餾水使醇鹽水解,聚合,形成溶膠。溶膠形成后隨著水的加入轉變為凝膠。其***用于莫來石、氧化鋁、氧化鋯等氧化物粉末的制備。由于膠體混合時可使反應物質進行**直接的接觸,以達到**徹底的均勻化,所制...
目前特種陶瓷的主要燒結方法有:熱壓燒結、反應熱壓燒結、熱等靜壓燒結法、反應燒結法、氣氛燒結法、化學氣相沉積法、濺射法等。1熱壓燒結熱壓燒結是對較難燒結的粉料或生胚在模具內施加壓力,同時升溫燒結的工藝。熱壓燒結的是可降低成型壓力,燒結溫度低無需加入燒結促進劑,能改善制品性能。但其過程及設備復雜,生產效率低,生產控制較難,模具材料要求高,能耗大。該法已用于A陶瓷車刀的制備,在,PZT,Si3N4等材料生產中也有廣泛應用。2FCa2FCa2FCa2反應熱壓燒結高溫下粉料可能發生某種化學反應過程,利用這一化學反應進行的熱壓燒結工藝稱為。江蘇中超金屬科技,特種陶瓷領域的佼佼者,值得信賴。雨花臺區特種陶瓷...
是將準備在其表面沉積一層瓷質薄膜的物質置于真空室中,加熱至一定溫度后,然后將預被覆瓷料的氣態化合物通過加熱載體的表面。在某一特定的溫度下,氣體與加熱基體的的表面接觸后,氣相發生分解反應,并將瓷料沉積于基體表面。晶粒隨產物的沉積不斷長大,直至形成致密多晶的結構。適當控制集體表面溫度和氣體流量可控制晶粒粗細。氣相沉積成瓷的速率比較慢,但可獲得質量極高的陶瓷膜。具有晶粒細小、高度致密、不透氣、高純度和高耐磨等 。用CVD法形成的瓷膜,具有晶粒定向的特征。即它雖然是多晶,但在晶粒成長時,幾乎都是按某一晶軸垂直于集體表面的方式生長。該特點對于介電性能或光學性能是有益的,但對于機械物理性能是不利的。控制成...
是將準備在其表面沉積一層瓷質薄膜的物質置于真空室中,加熱至一定溫度后,然后將預被覆瓷料的氣態化合物通過加熱載體的表面。在某一特定的溫度下,氣體與加熱基體的的表面接觸后,氣相發生分解反應,并將瓷料沉積于基體表面。晶粒隨產物的沉積不斷長大,直至形成致密多晶的結構。適當控制集體表面溫度和氣體流量可控制晶粒粗細。氣相沉積成瓷的速率比較慢,但可獲得質量極高的陶瓷膜。具有晶粒細小、高度致密、不透氣、高純度和高耐磨等 。用CVD法形成的瓷膜,具有晶粒定向的特征。即它雖然是多晶,但在晶粒成長時,幾乎都是按某一晶軸垂直于集體表面的方式生長。該特點對于介電性能或光學性能是有益的,但對于機械物理性能是不利的。控制成...
粘結劑能使粉末填充成預期形狀,它對整個工藝有重要的影響。理想的粘結劑應該具有以下特點:1)在成型溫度下純粘結劑的粘度在1Pa·s以***動時不發生與粉體的分離,冷卻后有足夠的強度和硬度;2)為惰性物質,與粉體不發生反應;3)在成型和混合溫度以上才分解,分解的產物無毒、無腐蝕性且殘余灰分少;4)膨脹系數低,由熱膨脹或結晶引起的殘余應力低;5)符合環保要求,價廉、安全、不吸濕、無易揮發組分,貯藏壽命長。使用的大多數粘結劑可分為3類:蠟基或油基粘結劑、水基粘結劑和固體聚合物溶液。蠟基粘結劑通常含3-4個組分,聚合物控制著流動粘度、生品(燒結前的坯體)強度和脫脂的特征。短分子鏈的成型性能好且可使成型元...
特種陶瓷基礎技術的研究,例如燒結機理、檢測技術和粉末制備技術等超導陶瓷的研究;特種陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而許多國家都把它作為一項主要內容而加以研究;陶瓷的纖維化是研制隔熱材料、復合增強材料等的重要基礎,如今國外,尤其是日本對陶瓷纖維及晶須增強金屬復合材料的研究極為重視,其研究主要集中于碳化硅及氮化硅, 孔陶瓷由于具有特殊結構,所以引起了各界的重視; 陶瓷與陶瓷或陶瓷與其它材料復合(陶瓷纖維增強陶瓷,陶瓷纖維增強金屬)問題也是現階段的研究重點在非氮化物陶瓷中,目前國外研究**多的是陶瓷發動機,高壓熱交挽器及陶瓷刀具等;隨著生物化學,生物醫學這些新興學科的發展,...
硫化物陶瓷:硫化鋅、硫化鈰等。還有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。除了主要由一種化合物構成的單相陶瓷外,還有由兩種或兩種以上的化合物構成的復合陶瓷。例如,由氧化鋁和氧化鎂結合而成的鎂鋁尖晶石陶瓷,由氮化硅和氧化鋁結合而成的氧氮化硅鋁陶瓷,由氧化鉻、氧化鑭和氧化鈣結合而成的鉻酸鑭鈣陶瓷,由氧化鋯、氧化鈦、氧化鉛、氧化鑭結合而成的鋯鈦酸鉛鑭(PLZT)陶瓷等等。此外,有一大類在陶瓷中添加了金屬而生成的金屬陶瓷,例如氧化物基金屬陶瓷,碳化物基金屬陶瓷,硼化物基金屬陶瓷等,也是現代陶瓷中的重要品種上。近年來,為了改善陶瓷的脆性,在陶瓷基體中添加了金屬纖維和無機纖維,這樣構成的纖維補強陶瓷復合材料...
為了生產、研究和學習上的方便,有時不按化學組成,而根據陶瓷的性能,把它們分為**度陶瓷,高溫陶瓷,高韌性陶瓷,鐵電陶瓷,壓電陶瓷,電解質陶瓷,半導體陶瓷,電介質陶瓷,光學陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。 納米陶瓷:它是指晶粒尺寸,晶界寬度,第二相分布,缺陷尺寸均在100nm以下,并具有納米材料固有特征的陶瓷材料。必須指出,即使采用納米粉料,坯體在燒成過程中往往發生晶體迅速成長,甚至出現二次重結晶等問題,結果導致產品已不是納米陶瓷,而是微米陶瓷,因而失去了納米材料的固有特性,也就不能稱為納米陶瓷.另一方面近來許多報道表明,一旦獲得納米陶瓷,將可望克服陶瓷材料的脆性,而且有顯著...
特種陶瓷成形方法有很多種,生產中應根據制品的形狀選擇成形方法,而不同的成形方法需選用的結合劑不同。常見陶瓷成形方法、結合劑種類及用量如下所示:特種陶瓷成形方法、結合劑種類和用量成形方法結合劑舉例<;結合劑用量(質量%)千壓法聚乙烯醇縮丁醛等1~5澆注法丙烯基樹脂類1~3擠壓法甲基纖維素等5~15注射法聚丙烯等10~25等靜壓法聚羧酸銨等0~3。 結合劑可分為潤滑劑、增塑劑、分散劑、表面活性劑(具有分散劑和潤滑功能)等,為滿足成形需要,通常采用多種有機材料的組合。選擇結合劑,要考慮以下因素:1)結合 江蘇中超金屬科技,特種陶瓷領域的佼佼者,值得信賴。青浦區定做特種陶瓷原來的陶瓷就是指陶...
缺乏可塑性,具有膨脹特性的坯土使擠壓不夠光滑,表面缺陷增加。因此,對結合劑的性能應有評價指標。評價還土的可塑性方法,有施加扭曲、壓縮、拉伸等應力,求出應力與變形之間的關系,用毛細管流變計的方法、粘彈性的方法等。用這種方法可以評價坯土的自守性和流動性。在用粘彈性的方法評價時,可得出結合劑配合量增加到一定程度時,自守性和流動性均會增加的結果。也就是說,結合劑配合量的增加有助于原料的可塑性增加。有機材料是特種陶瓷的主要結合劑,合理選用這些有機材料是保證產品質量的關鍵。在生產中,應根據粉料的特性、制品的形狀、成形方法綜合進行選擇。在江蘇中超金屬科技,感受特種陶瓷帶來的震撼與驚喜。耐用特種陶瓷量大從優好...
陶瓷分離膜:它是一種固態膜,主要有兩部份構成,即膜支撐體及多孔膜。支撐體***采用含鋁量高的氧化鋁陶瓷。多孔膜主要由AL2O3,ZrO2,TiO2和SiO2等為主體構成。一般分離膜孔徑為:2~50nm,有時達微米級,其品種,規格日趨多樣化。分離膜通常具有化學穩定性好,能耐酸,耐堿,耐有機溶劑,機械強度高,耐磨性好,可反向沖洗;抗微生物能力強;耐高溫;孔徑分布范圍窄,分離效率高等特點。目前許多產品已在廢水處理、果汁生產、固液分離等方面獲得應用,可望在環境工程,石油化工,生物工程,冶金工業及納米粉料制備等眾多領域獲得廣泛應用,市場前景頗好,社會經濟效益顯著。當前陶瓷膜分離技術發展迅速,正向著介孔膜...
特種陶瓷基礎技術的研究,例如燒結機理、檢測技術和粉末制備技術等超導陶瓷的研究;特種陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而許多國家都把它作為一項主要內容而加以研究;陶瓷的纖維化是研制隔熱材料、復合增強材料等的重要基礎,如今國外,尤其是日本對陶瓷纖維及晶須增強金屬復合材料的研究極為重視,其研究主要集中于碳化硅及氮化硅, 孔陶瓷由于具有特殊結構,所以引起了各界的重視; 陶瓷與陶瓷或陶瓷與其它材料復合(陶瓷纖維增強陶瓷,陶瓷纖維增強金屬)問題也是現階段的研究重點在非氮化物陶瓷中,目前國外研究**多的是陶瓷發動機,高壓熱交挽器及陶瓷刀具等;隨著生物化學,生物醫學這些新興學科的發展,...
好的結合劑易于被粉料充分潤濕,且內聚力大。當結合劑被粉料潤濕時,在相互分子間發生引力作用,結合劑與粉料間發生紅結合(一次結合),同時,在結合劑分子內,由于取向、誘導、分散效果而產生內聚力(二次結合)。雖然水也能把楊料充分潤濕,但水易揮發,分子量較小,內聚力小,不是好的結合劑。按各種有機材料內聚力大小順序,用基表示可排列如下:一CONH一>;-CONH2>;一COOH>;一OH>;-NO2>;-COOC2H5>;一COOCH5>;-CHO>=CO>;-CH3>=CH2>;-CH2特種陶瓷——江蘇中超金屬科技的拳頭產品,備受推崇。寶山區進口特種陶瓷增塑劑用來調節聚合物的流動特性。水基粘結劑含有水溶...
陶瓷制品生產在中國歷史悠久,經過長期的發展,制造工藝得到不斷發展。特別是近二十年來,陶瓷制品結構的合理調整,迎合了國內外消費者的消費需求,并隨著社會的發展和生活水平的提高,在生活中的應用范圍越來越廣。 特種陶瓷(工程結構陶瓷,電子陶瓷,生物陶瓷)具有電、聲、光、磁、熱、力學、化學、醫學等一種或多種物理,化學功能,在許多場合不論現在或將來都不能為其它材料所取代,已成為用途***,迅速發展的新興產業。粉體制備制取粉體是特種陶瓷生產工藝中的首要步驟。主要有機械破碎發和物理化學方法兩種。由于前一種方法制取粒徑較大,在生產中處于從屬地位。而后一種方法是由離子原子分子通過反應、成核和生長制成粒子...
成型方面:特種陶瓷成型方法大體分為干法成型和濕法成型兩大類,干法成型包括鋼模壓制成型、等靜壓成型、超高壓成型、粉末電磁成型等;濕法成型大致可分為塑性成型和膠態澆注成型兩大類。近些年來膠態成型和固體無模成型技術在特種陶瓷的成型研究中也取得了較為快速的發展。陶瓷膠態成形是高分散陶瓷漿料的濕法成形,與干法成形相比,可以有效控制團聚,減少缺陷。無模成形實際上是快速原型制造技術(Rapidprototypingmanufacturingtechnology,RP&M)在制備陶瓷材料中的應用。特種陶瓷材料膠態無模成形過程是通過將含或不含粘結劑的陶瓷漿料在一定的條件下直接從液態轉變為固態,然后按照R探索江蘇...
特種化陶瓷是在陶瓷坯料中加入特別配方的無機材料,經過1360度左右高溫燒結成型,從而獲得穩定可靠的防靜電性能,成為一種新型陶瓷,通常具有一種或多種功能,如:電、磁、光、熱、聲、化學、生物等功能;以及耦合功能,如壓電、熱電、電光、聲光、磁光等功能。 結合劑可分為潤滑劑、增塑劑、分散劑、表面活性劑(具有分散劑和潤滑功能)等,為滿足成形需要,通常采用多種有機材料的組合。選擇結合劑,要考慮以下因素:結合劑能被粉料潤濕是必要條件。當粉料的臨界表面張力(yoc)或表面自由能(yos)比結合劑的表面張力(yoc)大時,才能很好地潤濕。 在江蘇中超金屬科技,特種陶瓷的創新之路永無止境。泰州新款特種陶...
為了生產、研究和學習上的方便,有時不按化學組成,而根據陶瓷的性能,把它們分為**度陶瓷,高溫陶瓷,高韌性陶瓷,鐵電陶瓷,壓電陶瓷,電解質陶瓷,半導體陶瓷,電介質陶瓷,光學陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。 納米陶瓷:它是指晶粒尺寸,晶界寬度,第二相分布,缺陷尺寸均在100nm以下,并具有納米材料固有特征的陶瓷材料。必須指出,即使采用納米粉料,坯體在燒成過程中往往發生晶體迅速成長,甚至出現二次重結晶等問題,結果導致產品已不是納米陶瓷,而是微米陶瓷,因而失去了納米材料的固有特性,也就不能稱為納米陶瓷.另一方面近來許多報道表明,一旦獲得納米陶瓷,將可望克服陶瓷材料的脆性,而且有顯著...
特種陶瓷成形方法有很多種,生產中應根據制品的形狀選擇成形方法,而不同的成形方法需選用的結合劑不同。常見陶瓷成形方法、結合劑種類及用量如下所示:特種陶瓷成形方法、結合劑種類和用量成形方法結合劑舉例<;結合劑用量(質量%)千壓法聚乙烯醇縮丁醛等1~5澆注法丙烯基樹脂類1~3擠壓法甲基纖維素等5~15注射法聚丙烯等10~25等靜壓法聚羧酸銨等0~3。 結合劑可分為潤滑劑、增塑劑、分散劑、表面活性劑(具有分散劑和潤滑功能)等,為滿足成形需要,通常采用多種有機材料的組合。選擇結合劑,要考慮以下因素:1)結合 在江蘇中超金屬科技,特種陶瓷的每一次突破都是對行業的致敬。寶山區靠譜的特種陶瓷 與普...
特種陶瓷是二十世紀發展起來的,在現代化生產和科學技術的推動和培育下,它們"繁殖"得非常快,尤其在近二、三十年,新品種層出不窮,令人眼花繚亂。按照化學組成劃分有: 氧化物陶瓷:氧化鋁、氧化鋯、氧化鎂、氧化鈣、氧化鈹、氧化鋅、氧化釔、二氧化鈦、二氧化釷、三氧化鈾等。 氮化物陶瓷:氮化硅、氮化鋁、氮化硼、氮化鈾等。 碳化物陶瓷:碳化硅、碳化硼、碳化鈾等。 氟化物陶瓷:氟化鎂、氟化鈣、三氟化鑭等。 還有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。 在江蘇中超金屬科技,發現特種陶瓷的無限潛力與精彩應用。金山區特種陶瓷歡迎選購特點:操作簡便,可成型各種形狀復雜的制品,生坯的強度...
是將準備在其表面沉積一層瓷質薄膜的物質置于真空室中,加熱至一定溫度后,然后將預被覆瓷料的氣態化合物通過加熱載體的表面。在某一特定的溫度下,氣體與加熱基體的的表面接觸后,氣相發生分解反應,并將瓷料沉積于基體表面。晶粒隨產物的沉積不斷長大,直至形成致密多晶的結構。適當控制集體表面溫度和氣體流量可控制晶粒粗細。氣相沉積成瓷的速率比較慢,但可獲得質量極高的陶瓷膜。具有晶粒細小、高度致密、不透氣、高純度和高耐磨等 。用CVD法形成的瓷膜,具有晶粒定向的特征。即它雖然是多晶,但在晶粒成長時,幾乎都是按某一晶軸垂直于集體表面的方式生長。該特點對于介電性能或光學性能是有益的,但對于機械物理性能是不利的。控制成...
壓電陶瓷材料壓電陶瓷是實現機械能與電能相互轉換重要的功能材料,廣泛應用于音響設備、傳感器、報警器、超聲清洗、醫療診斷及通訊等許多領域。一般壓電陶瓷材料為鋯鈦酸鉛(PZT)系,有的瓷料中氧化鉛含量高達60~70%左右,由于生產過程中產生的粉塵及燒結過程中的鉛揮發,這不僅給工藝和產品質量穩定帶來諸多問題,而且給生態環境和人類的健康帶來危害,研究新型無鉛壓電陶瓷以減少對環境的污染己成為一項十分緊迫的任務。 1961年前蘇聯學者Smolensky等人發現鈦酸鉍鈉(Bi1/2Na1/2)TiO3,簡稱BNT為鈣鈦礦型(ABO3)鐵電體。其居里點為320℃。極化困難限制其實際應用,直到80年代末,90年代...
壓電陶瓷材料壓電陶瓷是實現機械能與電能相互轉換重要的功能材料,廣泛應用于音響設備、傳感器、報警器、超聲清洗、醫療診斷及通訊等許多領域。一般壓電陶瓷材料為鋯鈦酸鉛(PZT)系,有的瓷料中氧化鉛含量高達60~70%左右,由于生產過程中產生的粉塵及燒結過程中的鉛揮發,這不僅給工藝和產品質量穩定帶來諸多問題,而且給生態環境和人類的健康帶來危害,研究新型無鉛壓電陶瓷以減少對環境的污染己成為一項十分緊迫的任務。 1961年前蘇聯學者Smolensky等人發現鈦酸鉍鈉(Bi1/2Na1/2)TiO3,簡稱BNT為鈣鈦礦型(ABO3)鐵電體。其居里點為320℃。極化困難限制其實際應用,直到80年代末,90年代...