材料科學的進步同樣功不可沒,碳纖維復合材料的應用使機器人整機重量減輕40%,而抗沖擊性能提升3倍,即使遭遇爆破沖擊波也能保持結構完整。更值得關注的是,人工智能技術的融入正在重塑排爆作業模式——基于深度學習的目標識別算法可自動標記可疑物品,通過分析歷史爆破案數據預測引信類型,甚至能模擬不同處置方案的風險值,為操作員提供決策支持。這種從被動執行到主動輔助的轉變,標志著排爆機器人正從單一工具向智能作戰伙伴演進,未來或將在城市反恐、核設施巡檢、地震災后搜救等場景中發揮更關鍵的作用。高校實驗室里,輪式物資運輸機器人安全運送精密儀器和實驗耗材。沈陽小型排爆機器人救援機器人的重要功能在于突破傳統救援手段的時...
小型履帶排爆機器人作為特種作業裝備的重要標志,其功能設計充分體現了對復雜危險環境的適應性。其履帶式底盤采用強度高鋁合金與橡膠復合結構,配合單獨懸掛系統,可在碎石、泥濘、斜坡等非結構化地形中保持穩定移動,較大爬坡角度達35°,涉水深度超過300mm。機械臂系統采用六自由度設計,末端執行器集成力反饋傳感器,可精確完成剪線、抓取、轉移等操作,負載能力達5kg,重復定位精度±0.1mm。在排爆作業中,機器人通過雙目立體視覺與激光雷達融合導航,構建三維環境模型,配合毫米波雷達實現障礙物穿透探測,確保在煙霧、粉塵等低能見度條件下仍能精確定位爆破物。其防爆設計符合國際ATEX標準,本體采用氣密封裝結構,關鍵...
輪式物資運輸機器人的工作原理建立在輪式移動機構與智能控制系統的深度融合之上,其重要是通過輪子與地面的滾動接觸實現高效、穩定的物資搬運。以宇衛創海全地形輪式運輸機器人為例,其移動系統采用六輪單獨驅動結構,每個輪子配備直流無刷電機與行星齒輪減速器,電機通過PWM信號精確控制轉速,減速器則將電機高速旋轉轉化為輪子的大扭矩輸出。這種設計使機器人能承載數噸物資,在山地、沼澤等復雜地形中保持每小時10公里以上的移動速度。其輪胎采用高彈性橡膠與金屬篩網復合結構,橡膠層提供抓地力,金屬篩網則增強抗穿刺能力,配合液壓懸掛系統自動調節輪高,可應對15厘米高度差的地形變化。例如在礦山場景中,該機器人能通過調整前后輪...
針對動態障礙物(如移動人群),機器人啟用SLAM同步建圖與定位功能,結合深度學習目標檢測模型,可識別行人、車輛等20類障礙物,避障響應時間縮短至0.2秒。在農業場景中,該機器人通過視覺識別跟隨系統,可鎖定移動目標(如作業人員)并保持2米安全距離,路徑跟蹤誤差小于5厘米。此外,其動力分配算法根據地形坡度(0-30度)與土壤剛度系數(0.1-10N/mm)動態調整輪速比,例如在20度斜坡上,前輪扭矩增加30%以防止打滑,后輪采用再生制動回收15%動能,使續航時間延長至8小時。這些技術突破使全地形輪式運輸機器人能夠在建筑工地、農田、災區等非結構化環境中,以6公里/小時的速度穩定運輸500公斤貨物,作...
其自主導航系統依托SLAM(同步定位與地圖構建)算法,結合深度學習障礙物識別技術,可規劃比較好的路徑并動態調整行進策略。通信系統采用雙冗余設計,主鏈路為5G/LTE專網,備用鏈路為低頻段數傳電臺,確保在電磁干擾環境下仍能保持每秒10M以上的數據傳輸速率。此外,機器人配備環境參數監測模塊,可實時檢測可燃氣體濃度、放射性物質強度及結構應力分布,為操作人員提供決策支持。在人機交互方面,通過增強現實(AR)頭盔與力反饋操縱桿,實現遠程沉浸式操控,操作延遲控制在200ms以內,滿足高風險場景下的實時響應需求。考古現場,輪式物資運輸機器人小心運送文物和發掘工具,保護文物安全。廣西中型單擺臂履帶排爆機器人機...
特情救援機器人的工作原理建立在多傳感器融合與自主決策技術體系之上,其重要是通過環境感知、路徑規劃、任務執行三大模塊的協同運作,實現對復雜災害場景的快速響應與精確施救。以地震廢墟救援場景為例,機器人搭載的熱成像儀與生命探測儀可穿透煙霧和瓦礫,通過人體體溫與微弱生命體征的信號捕捉,在5米范圍內精確定位被困人員。這類傳感器采用非接觸式探測技術,能識別心跳頻率誤差±2次/分鐘、呼吸頻率誤差±1次/分鐘的生物信號,即使被困者處于昏迷狀態也能有效識別。與此同時,機器人頂部的360°全景攝像頭與前部120°廣角攝像頭形成視覺互補,前者通過俯瞰視角繪制救援現場三維地圖,后者則聚焦細節識別障礙物類型,二者數據經...
機械臂與控制系統的集成是該類機器人完成排爆任務的關鍵。機械臂通常采用6自由度串聯結構,由基座旋轉、大臂俯仰、小臂伸縮、腕部旋轉、手爪開合及夾爪旋轉6個關節組成,每個關節配備高精度編碼器與力矩傳感器,可實現0.1°的位置控制精度和5N的力反饋靈敏度。當執行爆破物轉移任務時,操作員通過有線/無線雙模遙控器發送指令,控制系統首先調用預存的環境地圖,結合激光雷達與雙目視覺的實時數據,規劃機械臂運動路徑;隨后,驅動電機以50rpm的轉速帶動諧波減速器,使機械臂末端以0.3m/s的速度靠近目標。輪式物資運輸機器人通過區塊鏈技術,確保物資運輸信息的可追溯性。蘇州小型排爆機器人廠家中型單擺臂履帶排爆機器人的工...
中大型單擺臂履帶排爆機器人的工作原理建立在機械結構與動力系統的協同基礎上,其重要是通過履帶底盤與單擺臂的復合運動實現復雜地形下的穩定移動。以北京凌天研發的中型排爆機器人(第7代)為例,該機型采用履帶+前后雙擺臂結構,但單擺臂設計在簡化機械復雜度的同時,通過單獨驅動系統賦予擺臂靈活的越障能力。履帶部分由橡膠包裹的金屬骨架構成,表面設計防滑紋路以增強抓地力,內部通過主動輪、從動輪及支撐輪的聯動實現連續滾動。當機器人遇到樓梯、壕溝或碎石路時,單擺臂可通過直流伺服電機單獨調整角度——例如前擺臂向上抬起形成支撐點,后擺臂配合履帶推進形成爬行姿態,使機器人重心平穩過渡。這種設計既保留了履帶底盤的低重心特性...
在智能化與多功能集成方面,此類排爆機器人通過模塊化設計實現了任務場景的快速適配。其重要系統搭載360度全景影像系統,通過4路高清攝像機與圖像拼接算法,為操作人員提供無死角視野,配合雙向音頻對講模塊,可實時查看犯罪分子對話并調整戰術。例如,在反恐行動中,機器人可先通過熱成像儀定位隱藏爆破物,再利用機械臂搭載的22毫米銷毀器對引信進行精確打擊,全程通過光纖或5G網絡實現1公里外的遠程操控。此外,其動力系統采用磷酸鐵鋰電池組,支持6小時連續作業,并配備應急有線控制模式,可在電磁干擾環境下通過100米線纜維持操作穩定性。在法國TRS200型排爆機器人的實戰應用中,類似設計使其成功完成巴黎地鐵未爆彈處置...
物質運輸是救援場景中維持生命線與作業效率的重要環節,救援機器人通過集成多模態移動系統與智能感知技術,實現了復雜環境下的高效物資投送。針對地震廢墟、山體滑坡等非結構化地形,機器人采用履帶式與足式混合驅動結構,結合激光雷達與深度相機構建的三維環境模型,可自主規劃路徑并避開障礙物。其貨箱模塊采用快速更換設計,既能承載醫療包、飲用水等輕型物資,也可通過外部裝置運輸擔架或小型發電機。在通信中斷的極端環境下,機器人依托慣性導航與視覺地標匹配技術保持定位精度,同時通過中繼通信模塊搭建臨時網絡,確保后方指揮中心實時掌握物資投放狀態。例如,在模擬城市內澇的測試中,配備浮力裝置的水陸兩用機器人成功將急救藥品送達被...
面對30度斜坡或泥濘地形時,擺臂通過調整攻角增大接地比壓,防止履帶打滑,確保機器人以1.2米/秒的速度穩定行進。這種結構不僅提升了機器人在廢墟、山地等復雜環境中的通過性,還通過模塊化設計支持快速更換擺臂末端執行器,例如將機械爪替換為雷達生命探測儀或熱成像模塊,實現一機多用。在天津某化工廠泄漏事故中,該機型通過單擺臂調整姿態,深入高危區域完成閥門關閉,同時利用搭載的毒氣檢測儀實時回傳數據,為指揮部提供決策依據。航空港內,輪式物資運輸機器人運送行李和航空器材,保障航班運行。武漢履帶式排爆機器人該型機器人的功能擴展性進一步強化了其戰術價值。通過模塊化接口設計,機械臂可快速更換銷毀器、X光檢測儀或化學...
全地形輪式運輸機器人作為智能裝備領域的前沿產物,通過仿生學設計與多模態驅動技術的深度融合,實現了復雜地形下的高效穩定運輸。其重要優勢在于采用可變形輪轂結構,通過液壓或電動調節系統使輪徑與胎面紋路實時適配,在砂石、泥濘、雪地等松軟地面可增大接觸面積提升抓地力,在巖石、階梯等硬質障礙前則收縮輪體增強通過性。配合四輪單獨轉向系統與陀螺儀穩定控制,該類機器人能在45°斜坡保持直線行駛,在狹窄空間完成原地旋轉掉頭。以礦山運輸場景為例,搭載激光雷達與視覺SLAM的導航系統可實時構建三維地形模型,結合AI路徑規劃算法,使運輸效率較傳統輪式設備提升3倍以上。同時模塊化貨箱設計支持快速更換,單次較大載重可達2噸...
環境感知系統配備激光雷達與毫米波雷達雙模避障模塊,在30米范圍內可構建三維空間地圖,自動規劃比較好的路徑。通信系統采用跳頻擴頻技術,在復雜電磁環境中仍能保持200米的有效控制距離。實際測試數據顯示,該機器人完成標準排爆流程(接近、識別、轉移、銷毀)的平均耗時較傳統設備縮短40%,且操作人員培訓周期從兩周壓縮至三天。這種效率提升源于其人性化交互設計,控制終端采用游戲手柄式布局,配合AR增強現實技術,可將機器人攝像頭畫面與三維建模數據疊加顯示,使操作人員獲得身臨其境的操控體驗。目前,該型機器人已通過公安部安全與警用電子產品質量檢測中心認證,在軌道交通、大型活動安保等領域形成規模化應用。電力巡檢場景...
智能決策系統是排爆機器人的大腦,其通過邊緣計算與遠程協同實現自主與人工干預的平衡。aunav.NEXT搭載雙MCU冗余控制系統,主控制器負責實時路徑規劃與機械臂運動學計算,從控制器則監控防爆結構完整性、氣體濃度等安全參數。當檢測到甲烷濃度超過85℃的T6等級閾值時,系統會自動切斷非必要電源并啟動強制散熱;若遭遇通信中斷,機器人可按原路返回或執行預設應急程序。在2025年巴黎機場的疑似爆破物處置中,該機器人通過AR遠程操控系統,將現場氣體濃度、設備參數等數據疊加至操作員AR眼鏡,配合力反饋手柄的0.1N觸覺反饋,使操作員在1公里外完成高精度銷毀動作,誤差控制在±1mm以內。這種邊緣計算+遠程增強...
在智能化升級方向上,現代排爆機器人已突破傳統遙控操作的局限,向自主決策與協同作業邁進。部分高級型號還配備了多模態傳感器陣列,能同時監測溫度、氣體濃度及電磁干擾,當檢測到異常波動時,系統會自動觸發預警并調整作業策略。更值得關注的是,排爆機器人正從單機作業向群體協同發展,通過5G通信技術實現多臺設備的信息共享與任務分配。例如,在大型爆破物處置現場,一臺機器人負責外部警戒與環境監測,另一臺執行重要拆解任務,第三臺則待命進行二次確認,這種分工模式明顯提升了作業效率與安全性。未來,隨著人工智能技術的進一步滲透,排爆機器人或將具備更強的環境適應能力與應急決策能力,成為反恐防爆領域不可或缺的智能戰友。輪式物...
履帶式排爆機器人的工作原理建立在復雜地形適應性與遠程操控技術的深度融合之上。其重要動力系統采用電力驅動,通過直流電機驅動履帶運動,實現前進、后退、轉向等基礎動作。履帶結構的設計尤為關鍵,采用橡膠或金屬材質的履帶板配合多組支重輪、驅動輪和導向輪,形成無限軌道式移動機構。這種結構將車體重量均勻分散至履帶與地面的接觸面,在松軟地面(如沙地、泥濘)作業時,接觸面積增大使壓強明顯降低,避免車體下陷;在崎嶇地形中,履帶齒的抓地力與懸掛系統的減震功能協同作用,確保機器人能以每小時30米的速度攀爬45度斜坡或跨越300毫米寬的壕溝。例如,靈蜥-H型機器人通過輪+腿+履帶復合結構,在平地使用四輪高速移動,遇臺階...
機械臂系統是中型單擺臂履帶排爆機器人的重要作業單元。以凌天EOD-R30搭載的6自由度液壓機械臂為例,其臂長1.55米,采用仿生關節設計,肩關節旋轉范圍達180°,肘關節彎曲角度160°,腕關節可360°旋轉,配合夾爪的240mm開口幅度,能精確抓取直徑20cm以內的爆破物。在水平伸展狀態下,機械臂仍可穩定操控10kg重物,垂直抓舉力達50kg,滿足對疑似爆破裝置的轉移需求。更關鍵的是,機械臂集成高能爆破物銷毀器,可觸發銷毀器產生定向沖擊波,直接摧毀TNT當量500g以內的爆破物,避免傳統搬運方式可能引發的二次爆破風險。在2024年西南山區地震救援中,該機器人利用機械臂的精確操控,成功從倒塌建...
在技術實現層面,負重5KG的小型履帶排爆機器人集成了多項前沿科技。動力系統采用雙模驅動設計,鋰電池供電模式下可連續工作4小時,有線供電模式則支持無限時長作業,這種冗余設計確保了復雜任務中的可靠性。運動控制算法融合了模糊PID與神經網絡技術,使機器人能在0.3米/秒至1.2米/秒的速度范圍內實現平滑調速,配合六軸慣性測量單元(IMU),可精確感知0.1度的姿態變化。機械臂采用諧波減速器與力反饋傳感器,抓取力控制精度達±0.5N,既能輕柔拾取文件類脆弱物品,又能穩定搬運5KG重的模擬爆破裝置。輪式物資運輸機器人具備防水性能,在潮濕環境下也能正常開展工作。蘇州負重10KG中型單擺臂履帶排爆機器人直銷...
特情救援機器人的工作原理建立在多傳感器融合與自主決策技術體系之上,其重要是通過環境感知、路徑規劃、任務執行三大模塊的協同運作,實現對復雜災害場景的快速響應與精確施救。以地震廢墟救援場景為例,機器人搭載的熱成像儀與生命探測儀可穿透煙霧和瓦礫,通過人體體溫與微弱生命體征的信號捕捉,在5米范圍內精確定位被困人員。這類傳感器采用非接觸式探測技術,能識別心跳頻率誤差±2次/分鐘、呼吸頻率誤差±1次/分鐘的生物信號,即使被困者處于昏迷狀態也能有效識別。與此同時,機器人頂部的360°全景攝像頭與前部120°廣角攝像頭形成視覺互補,前者通過俯瞰視角繪制救援現場三維地圖,后者則聚焦細節識別障礙物類型,二者數據經...
特情救援機器人功能的重要在于突破復雜環境對人類救援行動的物理限制,其設計融合了多模態感知、自主決策與高適應性執行三大技術維度。在感知層面,這類機器人通常搭載激光雷達、紅外熱成像儀、聲波定位裝置及氣體傳感器陣列,可穿透煙霧、粉塵或完全黑暗環境,精確識別被困者生命體征、空間結構損傷程度及潛在次生災害風險。例如,在地震廢墟中,其毫米波雷達能穿透混凝土碎塊探測微弱呼吸信號,結合三維激光掃描重建倒塌建筑內部拓撲,為后續救援路徑規劃提供數據支撐。同時,機器人配備的化學傳感器可實時監測有毒氣體濃度,避免救援人員因盲目進入而遭遇窒息或爆破風險,這種先探后入的策略明顯提升了高危場景下的作業安全性。輪式物資運輸機...
面對30度斜坡或泥濘地形時,擺臂通過調整攻角增大接地比壓,防止履帶打滑,確保機器人以1.2米/秒的速度穩定行進。這種結構不僅提升了機器人在廢墟、山地等復雜環境中的通過性,還通過模塊化設計支持快速更換擺臂末端執行器,例如將機械爪替換為雷達生命探測儀或熱成像模塊,實現一機多用。在天津某化工廠泄漏事故中,該機型通過單擺臂調整姿態,深入高危區域完成閥門關閉,同時利用搭載的毒氣檢測儀實時回傳數據,為指揮部提供決策依據。輪式物資運輸機器人憑借高效移動能力,正逐步成為工業物流領域的主力設備。蘇州家濟運編機器人生產公司負重20KG的中大型單擺臂履帶排爆機器人,其工作原理的重要在于通過機械結構與動力系統的協同,...
單擺臂機構作為越障輔助系統,其工作原理基于力學平衡與運動學解耦。擺臂由鋁合金肋板構成,通過花鍵軸與齒輪組實現360°旋轉,擺臂末端安裝可折疊輔助履帶。當機器人遇到臺階或壕溝時,控制系統首先分析地形參數,通過激光雷達與視覺傳感器構建三維環境模型。隨后,擺臂電機驅動擺臂向下展開,輔助履帶接觸地面形成臨時支撐點,此時主履帶與擺臂履帶形成四足支撐結構。例如,在跨越23厘米高的臺階時,擺臂以每秒15°的角速度展開至與地面呈45°夾角,輔助履帶提供額外摩擦力,使車體重心前移至臺階上方。機械臂在此過程中同步調整姿態,其6自由度電動伺服關節通過力反饋系統實時監測抓取力,確保在車體晃動時仍能穩定夾持爆破物。擺臂...
面對制造業轉型升級需求,物資運輸機器人正從單一功能向復合型解決方案演進。在汽車裝配車間,重載型運輸機器人采用四輪單獨驅動與全向移動技術,可承載3噸級零部件在狹窄通道內靈活轉向,其配備的力控傳感器能精確感知碰撞風險,確保與生產線的安全交互。通過與MES(制造執行系統)深度集成,機器人能根據生產節拍自動調整運輸頻次,將發動機、變速箱等重要部件準時送達工位,使生產線停機等待時間減少75%。在冷鏈物流場景,耐低溫運輸機器人采用密封驅動系統與隔熱材料,可在-25℃環境中持續工作,其搭載的物聯網模塊能實時上傳溫度數據至云端,當偏離設定范圍時立即觸發警報并啟動備用制冷單元。更值得關注的是,群控技術的突破使單...
救援機器人的工作原理聚焦于極端環境下的快速響應與精確施救,其技術架構融合了多模態感知、自主決策與遠程協同三大能力。以中國科學院合肥物質科學研究院研發的防溺水智能救援機器人為例,其感知系統由100臺光學與熱成像攝像機組成的監控網絡構成,可覆蓋直徑500米的水域范圍。光學攝像頭負責實時捕捉水面動態,通過卷積神經網絡(CNN)分析人體輪廓與動作特征,識別溺水者的擺臂、下沉等標志性動作;熱成像攝像機則通過檢測人體與水體的溫度差異,在夜間或能見度低于10%的惡劣天氣下依然能準確鎖定目標,識別準確率達99.7%。輪式物資運輸機器人支持多臺協同作業,形成高效的物資運輸網絡。蘇州物資運輸機器人生產廠在運動控制...
隨著人工智能技術的突破,新一代智能大型排爆機器人正從遠程操控向自主決策演進。基于深度強化學習的路徑規劃算法,使機器人能根據實時環境變化動態調整行動策略,例如在復雜建筑結構中自主選擇比較好的接近路線,或在遭遇突發障礙時快速重構作業方案。自然語言處理技術的融入,進一步實現了人機語音交互功能,操作人員可通過語音指令直接調用預設任務模式,提升應急響應效率。此外,機器人搭載的邊緣計算單元支持本地化數據處理,無需依賴云端即可完成圖像識別、爆破物分類等關鍵計算,大幅降低通信延遲與數據安全風險。在實戰應用中,這類機器人已展現出超越傳統設備的綜合能力:某次反恐行動中,其通過分析爆破物周邊環境參數,自主調整機械臂...
機械協同控制是智能排爆機器人的關鍵執行層,其通過多關節機械臂與末端執行器的精密配合實現危險物品的轉移與銷毀。以aunav.NEXT的雙臂系統為例,主機械臂采用7自由度設計,較大負載達250公斤,關節扭矩超過360N·m,可完成360度無死角操作;副機械臂則配備氣動柔性手爪,通過壓力傳感器實現0.1N至10N的力反饋控制,確保抓取爆破物時既不會因夾持力過大引發意外,也不會因力度不足導致滑落,該機器人通過雙臂協同完成夾持-轉移-銷毀全流程:此外,其工具管理系統支持一鍵自動更換破拆鉗、X光檢測儀等12種工具,配合預設程序庫,可快速適配反恐排爆、核生化處置等不同場景需求。醫療領域應用的輪式物資運輸機器...
救援機器人作為現代應急體系中的關鍵技術裝備,正通過多學科交叉融合實現功能突破。其重要價值在于突破人類救援的生理極限,例如在坍塌建筑內部,配備激光雷達與熱成像系統的蛇形機器人可穿越50厘米寬的縫隙,通過三維建模技術繪制被困者位置圖譜。這類設備往往采用模塊化設計,頭部可快速更換生命探測儀、毒氣檢測模塊或物資輸送裝置,配合六足底盤的強地形適應能力,能在地震廢墟、山體滑坡等復雜場景中持續作業12小時以上。當前研發重點已轉向人機協同系統,通過5G網絡實現操作員與機器人的半自主交互,既保留人類決策的靈活性,又利用AI算法優化搜索路徑。例如日本研發的Quince系列機器人,在福島核事故中完成了高輻射區域的初...
當系統檢測到溺水事件后,救援機器人會立即啟動路徑規劃模塊——其搭載的激光掃描儀以每秒50次的頻率更新環境數據,構建包含水流速度、風浪方向等參數的水域三維模型,結合改進型RRT*算法規劃出兼顧時間效率與安全性的救援路線。在運動控制方面,機器人采用雙體船設計,通過左右舵機的差速轉向實現靈活機動,船載雙光譜攝像機持續追蹤溺水者位置,若檢測到目標隨水流偏移,控制系統會實時調整推進器功率,確保機器人始終以0.5m/s的速度靠近目標。當到達溺水者3米范圍內時,機器人會釋放帶有壓力傳感器的救援臂,通過觸覺反饋調整抓握力度,避免因用力過猛導致二次傷害,同時釋放應急氧氣面罩與救生繩,整個救援過程可在90秒內完成...
履帶式排爆機器人作為特種作業裝備的重要載體,其功能設計深度融合了機械工程、人工智能與防爆技術,形成了覆蓋探測、處置、防護的全鏈條作業能力。在探測環節,機器人搭載的多模態傳感器陣列可實現毫米波雷達、激光三維掃描的協同工作,既能穿透障礙物識別爆破物內部結構,又能通過光譜分析判斷化學成分,配合AI圖像識別算法可在復雜環境中快速鎖定目標。其機械臂系統采用六自由度設計,末端執行器集成水刀切割、低溫冷凍、機械抓取等多種工具,可根據爆破物類型動態切換處置模式,例如對電起爆裝置采用絕緣鉗精確夾持。履帶式底盤的適應性設計尤為關鍵,其可變幅履帶結構能通過液壓系統調整接地壓力,在砂石地、泥濘區或樓梯斜坡等復雜地形中...
履帶式排爆機器人作為現代反恐與公共安全領域的重要技術裝備,其設計理念充分融合了機械工程、人工智能與危險環境作業的特殊需求。這類機器人通常采用履帶式底盤結構,相較于輪式或足式移動平臺,履帶設計明顯提升了在復雜地形中的通過性。無論是城市廢墟中的瓦礫堆、野外戰場的泥濘地帶,還是室內樓梯與狹窄通道,履帶與地面接觸面積大的特性使其能保持穩定移動,避免因打滑或側翻導致的任務中斷。其機械臂系統多采用六自由度設計,末端執行器可快速更換夾爪、X光檢測儀等工具,既能精確夾取微小引信裝置,也能通過高壓水射流遠程銷毀爆破物,較大限度降低人員直接接觸危險源的風險。輪式物資運輸機器人通過AI算法預測維護需求,提前通知更換...