三維光子互連技術與多芯MT-FA光纖連接的融合,正在重塑芯片級光通信的底層架構。傳統電互連因電子遷移導致的信號衰減和熱損耗問題,在芯片制程逼近物理極限時愈發突出,而三維光子互連通過垂直堆疊的光波導結構,將光子器件與電子芯片直接集成,形成立體光子立交橋。這種設計不僅突破了二維平面布局的密度瓶頸,更通過微納加工技術實現光信號在三維空間的高效傳輸。例如,采用銅錫熱壓鍵合工藝的2304個互連點陣列,在15微米間距下實現了114.9兆帕的剪切強度與10飛法的較低電容,確保了光子與電子信號的無損轉換。多芯MT-FA光纖連接器作為關鍵接口,其42.5度端面研磨技術配合低損耗MT插芯,使單根光纖陣列可承載800Gbps的并行傳輸,通道均勻性誤差控制在±0.5微米以內。這種設計在數據中心場景中展現出明顯優勢:當處理AI大模型訓練產生的海量數據時,三維光子互連架構可將芯片間通信帶寬提升至5.3Tbps/mm2,單比特能耗降低至50飛焦,較傳統銅互連方案能效提升80%以上。三維光子互連芯片的噴砂法TGV工藝,提升玻璃基板加工效率。上海三維光子芯片與多芯MT-FA光接口

三維光子芯片與多芯MT-FA光連接方案的融合,正在重塑高速光通信系統的技術邊界。傳統光模塊中,電信號轉換與光信號傳輸的分離設計導致功耗高、延遲大,難以滿足AI算力集群對低時延、高帶寬的嚴苛需求。而三維光子芯片通過將激光器、調制器、光電探測器等重要光電器件集成于單片硅基襯底,結合垂直堆疊的3D封裝工藝,實現了光信號在芯片層間的直接傳輸。這種架構下,多芯MT-FA組件作為光路耦合的關鍵接口,通過精密研磨工藝將光纖陣列端面加工為特定角度,配合低損耗MT插芯,可實現8芯、12芯乃至24芯光纖的高密度并行連接。例如,在800G/1.6T光模塊中,MT-FA的插入損耗可控制在0.35dB以下,回波損耗超過60dB,確保光信號在高速傳輸中的低損耗與高穩定性。其多通道均勻性特性更可滿足AI訓練場景下數據中心對長時間、高負載運行的可靠性要求,為光模塊的小型化、集成化提供了物理基礎。上海三維光子芯片與多芯MT-FA光接口通過垂直互連的方式,三維光子互連芯片縮短了信號傳輸路徑,減少了信號衰減。

在CPO(共封裝光學)架構中,三維集成多芯MT-FA通過板級高密度扇出連接,將光引擎與ASIC芯片的間距縮短至毫米級,明顯降低互連損耗與功耗。此外,該方案通過波分復用技術進一步擴展傳輸容量,如采用Z-block薄膜濾光片實現4波長合波,單根光纖傳輸容量提升至1.6Tbps。隨著AI大模型參數規模突破萬億級,數據中心對光互聯的帶寬密度與能效要求持續攀升,三維光子集成多芯MT-FA方案憑借其較低能耗、高集成度與可擴展性,將成為下一代光通信系統的標準配置,推動計算架構向光子-電子深度融合的方向演進。
高密度多芯MT-FA光組件的三維集成方案,是應對AI算力爆發式增長背景下光通信系統升級需求的重要技術路徑。該方案通過將多芯光纖陣列(MT-FA)與三維集成技術深度融合,突破了傳統二維平面集成的空間限制,實現了光信號傳輸密度與系統集成度的雙重提升。具體而言,MT-FA組件通過精密研磨工藝將光纖陣列端面加工為特定角度(如42.5°),結合低損耗MT插芯與V槽基板技術,形成多通道并行光路耦合結構。在三維集成層面,該方案采用層間耦合器技術,將不同波導層的MT-FA陣列通過倏逝波耦合、光柵耦合或3D波導耦合方式垂直堆疊,構建出立體化光傳輸網絡。例如,在800G/1.6T光模塊中,三維集成的MT-FA陣列可將16個光通道壓縮至傳統方案1/3的體積內,同時通過優化層間耦合效率,使插入損耗降低至0.2dB以下,滿足AI訓練集群對低時延、高可靠性的嚴苛要求。三維光子互連芯片通過先進封裝技術,實現與現有電子設備的無縫對接。

多芯MT-FA在三維光子集成系統中的創新應用,明顯提升了光收發模塊的并行傳輸能力與系統可靠性。傳統并行光模塊依賴外部光纖跳線實現多通道連接,存在布線復雜、損耗波動大等問題,而三維集成架構將MT-FA直接嵌入光子芯片封裝層,通過陣列波導與微透鏡的協同設計,實現了80路光信號在芯片級尺度上的同步收發。這種內嵌式連接方案將光路損耗控制在0.2dB/通道以內,較傳統方案降低60%,同時通過熱壓鍵合工藝確保了銅柱凸點在10μm直徑下的長期穩定性,使模塊在85℃高溫環境下仍能保持誤碼率低于1e-12。更關鍵的是,MT-FA的多通道均勻性特性解決了三維集成中因層間堆疊導致的光功率差異問題,通過動態調整各通道耦合系數,確保了80路信號在800Gbps傳輸速率下的同步性。隨著AI算力集群對1.6T光模塊需求的爆發,這種將多芯MT-FA與三維光子集成深度結合的技術路徑,正成為突破光互連功耗墻與密度墻的重要解決方案,為下一代超算中心與智能數據中心的光傳輸架構提供了變革性范式。三維光子互連芯片的技術進步,有助于推動摩爾定律的延續,推動半導體行業持續發展。廣東高性能多芯MT-FA光組件三維集成
自動駕駛汽車測試中,三維光子互連芯片確保多攝像頭數據的同步處理。上海三維光子芯片與多芯MT-FA光接口
三維光子集成多芯MT-FA光耦合方案是應對下一代數據中心與AI算力網絡帶寬瓶頸的重要技術突破。隨著800G/1.6T光模塊的規模化部署,傳統二維平面光互聯面臨空間利用率低、耦合損耗大、密度擴展受限等挑戰。三維集成技術通過垂直堆疊光子層與電子層,結合多芯光纖陣列(MT-FA)的并行傳輸特性,實現了光信號在三維空間的高效耦合。具體而言,MT-FA組件采用42.5°端面全反射設計,配合低損耗MT插芯與高精度V槽基板,將多芯光纖的間距壓縮至127μm甚至更小,使得單個組件可支持12芯、24芯乃至更高密度的并行光傳輸。在三維架構中,這些多芯MT-FA通過硅通孔(TSV)或銅柱凸點技術,與CMOS電子芯片進行垂直互連,形成光子-電子混合集成系統。上海三維光子芯片與多芯MT-FA光接口