我公司研制的GZPD-01型局部放電監測系統(風力發電機)采用分布式組網設計:2.1GZPD-01系統感知層的高頻脈沖電流(下文皆用“HF”簡稱)傳感器為卡鉗式安裝在發電機接地線上(如下圖3所示),實時在線監測發電機的局部放電HF信號。2.2GZPD-01系統感知層的局部放電采集器通過同軸電纜接收HF傳感器傳送的監測數據,并對原始的模擬信號經過放大、濾波、A/D轉換后再傳送至GZPD-01系統平臺層的計算機上。2.3GZPD-01系統平臺層的操控及監測數據分析軟件,對所有局部放電采集器通過網絡層傳送的監測數據進行分類識別分析、計算,后將這些數據導入的數據庫中,并計算機顯示監測結果。2.4GZPD-01系統集局部放電監測、定位、閾值超限警報等功能于一體,可有效實現風力發電機局部放電的實時在線監測,使發電機由例行性的計劃維修轉向精細性的狀態維修,將***提升整臺發電機組運行的可靠性。每一個風力發電機配置一個局部放電采集器和HF傳感器對于大型機械設備,此技術在保障安全生產方面意義何在?浙江GIS在線監測業績

智能算法在 GIS 設備機械性故障監測中也具有廣闊的應用前景。利用機器學習算法,如支持向量機、人工神經網絡等,對大量的振動和聲學監測數據進行學習和訓練。通過建立故障診斷模型,使算法能夠自動識別設備的正常運行狀態和各種機械性故障狀態。例如,將歷史監測數據中的正常狀態數據和已知的機械性故障狀態數據作為訓練樣本,訓練人工神經網絡模型。經過訓練的模型可以對實時監測數據進行快速分析,準確判斷設備是否存在機械性故障,并預測故障的發展趨勢,為設備的維護和檢修提供科學依據。浙江GIS在線監測業績杭州國洲電力科技有限公司振動聲學指紋在線監測系統的數據存儲方案。

監測設備能檢測到發生在被監測設備內部各處的、放電量不超過20pC的局部放電信號,并可準確判斷放電缺陷的類型。為保證監測靈敏度,UHF傳感器的配置不會低于以下的配置方案:(1)500kVHGIS設備一個完整串18個傳感器,GIS母線每間隔6m布置1個傳感器;(2)500kVGIS設備一個完整串36個傳感器,GIS母線每間隔6m布置1個傳感器;(3)220kVGIS設備(母線分箱結構)主變、出線間隔12個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(4)220kVGIS設備(母線共箱結構)主變、出線間隔12個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(5)110kVGIS設備(分箱結構)主變、出線間隔9個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(6)110kVGIS設備(共箱結構)主變、出線間隔3個,母聯、分段、PT間隔2個,GIS母線每隔10m布置1個傳感器。
變壓器/電抗器(下文皆用“變壓器”簡稱)在電力系統中起到電壓變換、電能分配等重要作用,其安全穩定運行對確保供電可靠性具有重要意義。有載分接開關(下文皆用OLTC簡稱)、繞組及鐵芯是變壓器的重要組成部分,三者故障率總和占變壓器整體故障70%左右,而傳統預防性試驗有試驗周期長、影響變壓器正常運行、耗費人力物力等缺點。開展基于聲學指紋的狀態監測,可在在線狀態下及時發現變壓器OLTC、繞組及鐵芯的潛在故障,并及時預警,從而延長變壓器使用壽命,提高電網運行的可靠性。聲學指紋監測時,對不同類型聲音的區分度參數是多少?

安裝方便使得本系統能夠迅速投入使用。特高頻傳感器和超聲波傳感器的外置安裝方式,只需將傳感器固定在 GIS 盆式絕緣子上,連接好特高頻電纜即可完成安裝。數據采集設備 IED 安裝于 IED 智能組件柜中,按照標準化的安裝流程進行固定和接線。整個安裝過程無需對 GIS 設備進行大規模拆解或改造,減少了對設備正常運行的影響。例如,在對現有變電站的 GIS 設備進行局部放電監測系統安裝時,能夠在短時間內完成安裝工作,快速實現對設備的監測,提高了設備運維的及時性。杭州國洲電力科技有限公司振動聲學指紋在線監測軟件的兼容性分析。GIS在線監測監測參數
杭州國洲電力科技有限公司GZAFV-01型聲紋振動監測系統解析。浙江GIS在線監測業績
報警信息設置是該軟件的關鍵功能之一。閾值報警設置讓檢測人員能夠依據設備絕緣狀況和運行標準,設定不同類型局部放電信號的幅值、頻次等閾值。一旦監測數據超過這些閾值,系統立即觸發報警。趨勢報警設置則關注局部放電信號隨時間的變化趨勢,當信號幅值、頻次等參數呈現明顯上升或異常波動趨勢時,即使當前數據未超過閾值,系統也會發出報警。同時,報警方式選擇豐富多樣,檢測人員可根據現場環境和運維需求,選擇聲、光、短信等報警形式,確保運維人員能及時獲取報警信息,采取相應措施。浙江GIS在線監測業績