在AI算力與超高速光通信的雙重驅動下,多芯MT-FA光組件與三維芯片互連技術的融合正成為突破系統性能瓶頸的關鍵路徑。作為光模塊的重要器件,MT-FA通過精密研磨工藝將光纖陣列端面加工為特定角度,結合低損耗MT插芯實現多路光信號的并行傳輸。其技術優勢體現在三維互連的緊湊性與高效性上:在垂直方向,MT-FA的微米級通道間距與硅通孔(TSV)技術形成互補,TSV通過深硅刻蝕、原子層沉積(ALD)絕緣層及電鍍銅填充,實現芯片堆疊層間的垂直導電,而MT-FA則通過光纖陣列的并行連接將光信號直接耦合至芯片光接口,縮短了光-電-光轉換的路徑;在水平方向,再布線層(RDL)技術進一步擴展了互連密度,使得MT-FA組件能夠與邏輯芯片、存儲器等異質集成,形成高帶寬、低延遲的光電混合系統。以800G光模塊為例,MT-FA的12芯并行傳輸可將單通道速率提升至66.7Gbps,配合TSV實現的3D堆疊內存,使系統帶寬密度較傳統2D封裝提升近2個數量級,同時功耗降低30%以上。物聯網終端普及,三維光子互連芯片助力構建更高效的萬物互聯網絡。溫州三維光子芯片多芯MT-FA光傳輸技術

從系統集成角度看,多芯MT-FA光組件的定制化能力進一步強化了三維芯片架構的靈活性。其支持端面角度、通道數量、保偏特性等參數的深度定制,可適配不同工藝節點的三維堆疊需求。例如,在邏輯堆疊邏輯(LOL)架構中,上層芯片可能采用5nm工藝實現高性能計算,下層芯片采用28nm工藝優化功耗,MT-FA組件可通過調整光纖陣列的pitch精度(誤差<0.5μm)和偏振消光比(≥25dB),確保異構晶片間的光耦合效率超過95%。此外,其體積小、高密度的特性與三維芯片的緊湊設計高度契合,單個MT-FA組件可替代傳統多個單芯連接器,將封裝體積縮小40%以上,同時通過多芯并行傳輸降低布線復雜度,使系統級信號完整性(SI)提升20%。這種深度集成不僅簡化了三維芯片的散熱設計,還通過光信號的隔離特性減少了層間電磁干擾(EMI),為高帶寬、低延遲的AI算力架構提供了物理層保障。隨著三維芯片向單芯片集成萬億晶體管的目標演進,MT-FA光組件的技術迭代將直接決定其能否突破內存墻與互連墻的雙重限制,成為未來異構集成系統的重要基礎設施。南昌多芯MT-FA光組件支持的三維芯片架構三維光子互連芯片還可以與生物傳感器相結合,實現對生物樣本中特定分子的高靈敏度檢測。

三維光子芯片的集成化發展對光耦合器提出了前所未有的技術要求,多芯MT-FA光耦合器作為重要組件,正通過其獨特的結構優勢推動光子-電子混合系統的性能突破。傳統二維光子芯片受限于平面波導布局,通道密度和傳輸效率難以滿足AI算力對T比特級數據吞吐的需求。而多芯MT-FA通過將多根單模光纖以42.5°全反射角精密排列于MT插芯中,實現了12通道甚至更高密度的并行光傳輸。其關鍵技術在于采用低損耗V型槽陣列與紫外固化膠工藝,確保各通道插損差異小于0.2dB,同時通過微米級端面拋光技術將回波損耗控制在-55dB以下。這種設計使光耦合器在800G/1.6T光模塊中可支持每通道66.7Gb/s的傳輸速率,且在-40℃至+85℃工業溫域內保持穩定性。實驗數據顯示,采用多芯MT-FA的三維光子芯片在2304個互連點上實現了5.3Tb/s/mm2的帶寬密度,較傳統電子互連提升10倍以上,為AI訓練集群的芯片間光互連提供了關鍵技術支撐。
在AI算力需求爆發式增長的背景下,多芯MT-FA光組件與三維芯片傳輸技術的融合正成為光通信領域的關鍵突破方向。多芯MT-FA通過將多根光纖精確排列于V形槽基片,并采用42.5°端面研磨工藝實現全反射傳輸,可同時支持8至24路光信號的并行傳輸。這種設計使得單個組件的傳輸密度較傳統單芯方案提升數倍,尤其適用于400G/800G高速光模塊的內部連接。當與三維芯片堆疊技術結合時,多芯MT-FA可通過垂直互連通道(TSV)直接對接堆疊芯片的各層光接口,消除傳統平面布線中的信號衰減與延遲。例如,在三維硅光芯片中,多芯MT-FA的陣列間距可精確匹配TSV的垂直節距,實現光信號在芯片堆疊層間的無縫傳輸。這種結構不僅將光互連密度提升至每平方毫米數百芯級別,更通過縮短光路徑長度使傳輸損耗降低。實驗數據顯示,采用該技術的800G光模塊在三維堆疊架構下的插入損耗可控制在0.35dB以內,較傳統二維布局提升。三維光子互連芯片的定向自組裝技術,利用嵌段共聚物實現納米結構。

多芯MT-FA光傳輸技術作為三維光子芯片的重要接口,其性能突破直接決定了光通信系統的能效與可靠性。多芯MT-FA通過將多根光纖精確排列在V形槽基片上,結合42.5°端面全反射設計,實現了單芯片80通道的光信號并行收發能力。這種設計不僅將傳統二維光模塊的通道密度提升了10倍以上,更通過垂直耦合架構大幅縮短了光路傳輸距離,使發射器單元的能耗降至50fJ/bit,接收器單元的能耗降至70fJ/bit,較早期系統降低超過60%。在技術實現層面,多芯MT-FA的制造涉及亞微米級精度控制:V形槽的pitch公差需控制在±0.5μm以內,光纖凸出量需精確至0.2mm,同時需通過銅柱凸點鍵合工藝實現光子芯片與電子芯片的2304點陣列高密度互連。光子集成工藝是實現三維光子互連芯片的關鍵技術。長沙高密度多芯MT-FA光組件三維集成芯片
光信號在傳輸過程中幾乎不會損耗能量,因此三維光子互連芯片在數據傳輸方面具有極低的損耗特性。溫州三維光子芯片多芯MT-FA光傳輸技術
在應用場景層面,三維光子集成多芯MT-FA組件已成為支撐CPO共封裝光學、LPO線性驅動等前沿架構的關鍵基礎設施。其多芯并行傳輸特性與硅光芯片的CMOS工藝兼容性,使得光模塊封裝體積較傳統方案縮小40%,功耗降低25%。例如,在1.6T光模塊中,通過將16個單模光纖芯集成于直徑3mm的MT插芯內,配合三維堆疊的透鏡陣列,可實現單波長200Gbps信號的無源耦合,將光引擎與電芯片的間距壓縮至0.5mm以內,大幅提升了信號完整性。更值得關注的是,該技術通過引入波長選擇開關(WSS)與動態增益均衡算法,使多芯MT-FA組件能夠自適應調節各通道光功率,在40km傳輸距離下仍可保持誤碼率低于1E-12。隨著三維光子集成工藝的成熟,此類組件正從數據中心內部互聯向城域光網絡延伸,為6G通信、量子計算等場景提供較低時延、超高密度的光傳輸解決方案,其市場滲透率預計在2027年突破35%,成為光通信產業價值鏈升級的重要驅動力。溫州三維光子芯片多芯MT-FA光傳輸技術