空氣凈化行業針對氡污染的治理,除了采用物理吸附技術外,還在探索化學中和與催化分解等新方法。某些化學試劑能夠與氡氣及其子體發生化學反應,將其轉化為無害物質。例如,含有特定金屬氧化物的催化劑可在一定條件下催化氡子體的分解,降低其放射性危害。雖然這些技術目前尚處于實驗室研究階段,但具有廣闊的應用前景??諝鈨艋髽I應積極開展產學研合作,加速新技術的研發和轉化,為市場提供更高效、更環保的氡污染治理產品,滿足不同行業對室內空氣質量提升的需求。提高建筑材料放射性安全標準能減少氡污染。降解氡污染治理技術

病癥研究行業致力于揭示氡致病的分子機制。研究發現,氡衰變產生的 α 粒子輻射可直接損傷細胞 DNA,導致基因突變、染色體畸變,進而引發細胞惡性轉化。此外,氡及其子體輻射還可促進細胞內的氧化應激反應和炎癥信號通路,促進細胞產生的贅生物細胞群的發生和發展。通過對氡致病機制的深入研究,有助于開發針對氡暴露相關病癥的早期診斷標志物和靶向療養藥物。目前,科學家正在研究利用基因編輯技術修復氡輻射導致的 DNA 損傷,為氡暴露相關病癥的療養提供新方向。裝修氡污染管控政策氡污染及其子體附著在顆粒物上易被吸入。

商業行業在新建建筑項目中,應從規劃設計階段就將氡污染防控納入考量。在選址時,避開氡濃度較高的地質區域;在建筑設計中,優化建筑物的通風系統,采用防氡性能良好的建筑材料和構造方式。例如,在地下室設計中,采用架空地板、密封墻體等措施,減少氡氣的滲入。有研究表明,在建筑設計階段采取有效的氡污染防控措施,可使建筑物全生命周期內的氡污染治理成本降低40%-50%。商業企業應加強與建筑設計、環境評估等專業機構的合作,確保新建項目符合氡污染防控要求,為后續運營創造良好的室內環境條件。
廚房烹飪產生的油煙含有大量油脂顆粒和異味物質,烹飪熱氣則改變了室內空氣的溫度和氣流方向,這兩者都會打亂氡氣原本的擴散路徑,使得氡濃度分布更加復雜,增加了監測和治理的難度。對此,采用分區通風系統是有效策略。將廚房與就餐區的通風管道單獨設置,能避免油煙與氡氣混合,防止油煙中的污染物附著在氡子體上,影響空氣凈化效果,同時也保障了就餐區的空氣質量。在就餐區安裝氡濃度實時監測設備,并與餐廳管理系統聯動,當氡濃度超過安全標準時,系統自動報警,同時啟動加強通風模式,快速降低氡濃度。例如某出名連鎖餐廳引入該方案后,不僅將室內氡濃度始終控制在安全范圍內,而且由于通風系統的合理設計,未對餐飲衛生和顧客體驗產生負面影響,還提升了顧客的就餐舒適度與安全性,實現了健康與經營效益的雙贏。安裝新風系統可主動降低室內氡污染水平。

老舊建筑由于建筑材料老化、結構破損,氡污染問題較為突出。墻體裂縫、地基沉降導致土壤中氡氣更容易進入室內,且老舊建筑通風系統不完善,氡氣難以排出。對老舊建筑進行氡污染改造,首先應進行各方面的氡濃度檢測,確定污染嚴重區域。然后,采取密封裂縫、修補破損墻體、安裝通風設備等措施。對于放射性超標的老舊建材,可考慮進行表面覆蓋或拆除更換。此外,在老舊建筑改造過程中,應充分考慮建筑結構安全和居民生活需求,制定合理的改造方案,降低氡污染風險。環保部門會監測并發布區域氡污染背景信息。地質氡污染行業準則
購房或租房前可考慮了解該房屋的氡污染歷史。降解氡污染治理技術
在環境風險防控領域,數值模型已成為預測氡氣在大氣中擴散路徑的重要工具。這類模型通過耦合氣象參數(如風速、風向、大氣穩定度)、地形特征及污染源強數據,能精細模擬氡氣的時空分布規律。以科羅拉多州 Denver Basin 氣田為例,TAIT 等學者 2023 年發表的研究通過構建三維大氣擴散模型,模擬了水力壓裂作業中的氡釋放過程,結果顯示:當風速低于 3 米 / 秒時,壓裂作業產生的氡氣可在下風向 5 公里范圍內形成濃度異常區,氡濃度較背景值升高 2-4 倍,且高濃度區域與逆溫層出現頻率呈明顯正相關。這一模擬結果為環保部門的風險管控提供了科學依據 —— 可基于模型輸出的氡濃度等值線圖,劃定關鍵控制區與警戒區,對距氣井 3 公里內的敏感點實施加密監測;同時結合模型預測的落地濃度,制定工業場所氡排放的小時均值標準(如建議不超過 500 貝克勒爾 / 立方米),并要求企業配套建設氡氣收集燃燒裝置,從源頭減少放射性氣體的無組織排放。降解氡污染治理技術