循環水管道和換熱器的電化學陰極保護可通過外加電流或犧牲陽極實現。以ImpressedCurrentCathodicProtection(ICCP)為例,鈦鍍鉑陽極(壽命>20年)輸出電流使碳鋼管道電位極化至-850mV(vs.CSE),腐蝕速率降低90%。設計需考慮:①陽極分布(每50米一組);②參比電極監控(Ag/AgCl);③絕緣法蘭(防雜散電流)。某海水循環冷卻系統中,ICCP技術使管道壽命從5年延長至15年以上。循環水排污水的回用是節水關鍵,電化學-超濾(EC-UF)組合工藝可同步去除懸浮物、有機物和微生物。鋁電極電解產生的Al3?水解后形成絮體(如Al(OH)?),通過吸附和電中和作用強化UF膜污染控制,通量衰減率降低60%。典型操作條件:電流密度20A/m2,膜通量50L/(m2·h)。某熱電廠的零排放項目中,EC-UF使反滲透進水SDI<3,回用率從70%提升至90%。電化學防垢涂層使結垢誘導期延長10倍。青海海水淡化電極

保護層對于電極的長期穩定運行具有重要意義,它能夠阻止環境因素對電極的不利影響。在實際應用中,電極可能會面臨濕度、溫度變化、化學物質侵蝕等多種環境因素的挑戰。保護層可以防止電極表面被氧化、腐蝕,避免活性物質與外界雜質發生反應,從而維持電極的性能穩定。例如在戶外使用的電化學傳感器電極,其保護層需要具備良好的防水、防紫外線性能;在化工生產中的電極,保護層則要能抵御強酸堿等化學物質的腐蝕。選擇電極材料時,導電性是一個極為關鍵的參數。不同的應用場景對導電性的要求差異很大,在電力傳輸領域,用于輸送大量電能的電極,必須具備極高的導電率,以減少電能在傳輸過程中的損耗。像銅這種常見的導電材料,其導電率較高,廣泛應用于一般的電力傳輸電極。而在一些對導電性能要求更為苛刻的電子器件中,如芯片中的電極,可能會選用導電率更高的銀或其他特殊材料,以滿足高速、高效的數據傳輸需求。河南源力循壞水電極除硬電化學阻抗譜實時監測腐蝕速率精度達0.001mm/a。

鈦電極可以根據不同的標準進行分類。按照涂層材料的不同,可分為鈦基二氧化釕電極、鈦基二氧化銥電極等。鈦基二氧化釕電極常用于氯堿工業電解制氯,其對析氯反應具有良好的電催化活性和穩定性;鈦基二氧化銥電極則在酸性介質中表現出優異的析氧性能,常用于電鍍、電合成等領域。依據電極的用途,又可分為陽極和陰極。陽極在電解過程中發生氧化反應,陰極則發生還原反應,不同的電極用途決定了其表面涂層和結構的設計差異,以滿足特定的電化學需求 。
PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑戰在于PPCPs的低濃度(ng/L~μg/L)和高背景有機物干擾,需通過提高電極選擇性(如分子印跡改性)或耦合前置吸附工藝來增強靶向降解。此外,實際水體中碳酸鹽等自由基淬滅劑會降低效率,需優化反應條件以抑制副反應。智能電極系統實現遠程監控。

鈦電極是以鈦為基體,通過表面改性處理制備而成的電極材料。鈦作為一種具有高比強度、良好耐腐蝕性的金屬,為電極提供了穩定的機械支撐。在電極制備過程中,通常會在鈦基體表面涂覆一層或多層具有電催化活性的物質,如金屬氧化物、貴金屬等。這些活性涂層能夠明顯改變電極的電化學性能,使其具備特定的電催化功能,從而在不同的電化學過程中發揮作用。例如,在氯堿工業中,鈦電極的使用大幅提高了電解效率和產品質量,推動了行業的發展。鈦電極的出現,為眾多需要高效、穩定電極材料的領域提供了新的解決方案。
三維電極處理苯酚廢水效率提高50%。青海海水淡化電極
電鍍法也是制備鈦電極的重要手段。在電鍍過程中,將鈦基體作為陰極,浸入含有活性金屬離子的電鍍液中,通過施加合適的電流密度,使活性金屬離子在鈦基體表面還原沉積,形成活性涂層。例如,在制備鈦基貴金屬電極時,可以采用電鍍法將金、鉑等貴金屬沉積在鈦基體表面。電鍍法能夠精確控制涂層的厚度和成分,制備出具有均勻涂層的鈦電極。同時,通過調整電鍍液的配方和電鍍工藝參數,還可以制備出具有特殊結構和性能的涂層,滿足不同的應用需求 。青海海水淡化電極