面向數智環境下圖書館數智服務的全要素精細感知、復雜資源有效融合、多服務高效協同等需求,結合IT規劃參考模型,系統分析智慧圖書館的前沿研究與實踐,充分融合智慧數據的演進范式及迭代模式,以數據治理體系為基礎、數智技術體系為賦能智慧數據流通轉化過程及圖書館數智服務流程,通過層次化、模塊化、組件化的方式,分人機交互層、數智服務層、業務層、數據存儲層、標準規范層、基礎設施層構建融合智慧數據的圖書館數智服務平臺。將更多的學科專業知識融匯起來,對潛在的相關知識進行有效整合,切實提升圖書館館藏資源價值。安徽智慧導讀

首先,智慧導讀系統會收集用戶在閱讀過程中的各種數據,包括但不限于用戶的閱讀時長、閱讀偏好、閱讀歷史、點擊行為、評論反饋等。這些數據可以通過用戶在平臺上的行為自動記錄,也可以通過用戶主動填寫問卷或設置偏好等方式獲取。收集到的原始數據可能包含噪聲、重復或無效信息,因此需要進行數據清洗和預處理。這一步包括去除重復數據、填充缺失值、轉換數據格式等操作,以便進行后續的數據挖掘工作。利用機器學習和數據分析技術,對用戶數據進行深度挖掘。這包括對用戶的閱讀習慣、興趣偏好、情感傾向等進行分析,發現用戶潛在的閱讀需求和興趣點。同時,通過對用戶數據的聚類、分類和關聯規則挖掘等,可以發現用戶群體之間的相似性和差異性,為后續的推薦算法提供依據。綜合智慧導讀服務費文本語義腦圖檢索系統通常會針對某一文獻內容特征進行單一維度的文獻聚類細分。

目前智慧閱讀服務的研究成果主要集中在服務系統、服務內容、用戶需求與行為等方面。面對新一代人工智能技術的不斷迭代,閱讀服務面臨前所未有的機遇與挑戰,當前學術閱讀智慧化服務存在哪些問題?如何依托AIGC技術賦能實現服務優化?這些問題亟需得到探究與明晰,但目前學界尚缺少聚焦學術閱讀智慧化服務領域的跟蹤研究。因此,本文擬利用內容分析法剖析目前國內外典型學術平臺的智慧閱讀服務現狀,總結存在問題,并探索AIGC技術賦能改進圖書館學術閱讀智慧化服務的路徑。
生成式AI在生成內容的過程中,經常會遇到生成內容準確度不高的問題,包括以下場景:表達錯誤,錯別字、病句較多,多有亂碼符號;邏輯混亂,上下旬沒有銜接,多為拼湊和重復內容;排版混亂,無段落,無標點,文章亂碼;圖文不相符,圖片模糊不清,圖片中有不良誘導或蹭流量的內容;音畫低質,視頻畫面傾斜、倒置、鏡像翻轉,畫面拉長變形,模糊不清;視頻濾鏡失真,邊框占比大,水印嚴重遮擋畫面等。因此,圖書館應配備專業人員對內容進行訂正調整,同時探索關于AI生成內容質量評估的相關理論,為生成內容提供依據。現在許多報紙都在運用這一特殊的新聞品種。

目前,國內外圖情領域對AIGC應用的研究大多圍繞信息資源管理、智慧圖書館服務等宏觀領域展開,多數定性探討AIGC應用場景及可行性問題。AIGC技術應用于圖書館服務的研究當前正處于初級階段,仍有較大的研究價值,而專門聚焦AIGC技術應用于閱讀服務的研究較少,更缺乏應用于學術閱讀服務的研究。王樹義和張慶薇[33]、吳若航和茆意宏[34]、蔡子凡和蔚海燕[35]分別探討AIGC技術對科研人員的影響及在圖書館服務、圖書館智慧閱讀服務的應用場景。C.Christopher和T.Elias認為ChatGPT對學術圖書館用戶的科研、教學、寫作等方面產生影響[36]。M.Rahman等則以完成一篇學術論文為例,探討在文章各部分應用ChatGPT的適應性及限制性上海半坡的遠程訪問服務能夠促使圖書館現有數字文獻館藏發揮更大的讀者服務效益。智能化智慧導讀概況
導讀的意義是在末尾留一個懸念,給書友們一個好奇心。安徽智慧導讀
智慧導讀依賴于大數據和機器學習技術,它通過對用戶閱讀行為、興趣偏好、歷史記錄等數據進行深度分析和挖掘,為用戶推薦個性化的閱讀內容。這種方式實現了對用戶數據的自動化處理和高效利用。而傳統的書籍推薦方式往往基于編輯或銷售人員的經驗判斷、**或**榜單等,這種方式雖然有其合理性,但可能缺乏足夠的個性化和精細性。智慧導讀通過機器學習和算法優化,能夠持續學習和適應用戶的閱讀行為變化,從而提供越來越精細的推薦。而傳統的推薦方式可能因為主觀因素或信息更新的滯后,其推薦精細度可能受到限制。推薦范圍和實時性:智慧導讀可以涵蓋海量的書籍資源,并根據實時數據更新推薦內容,使得用戶能夠接觸到更多元、更及時的閱讀選擇。傳統的推薦方式則可能受限于推薦源的數量和更新速度,無法提供如此***和及時的推薦。安徽智慧導讀