在技術迅速更迭下,國內外學者積極探索AIGC融入圖書館服務的應用場景。陸偉等探討以ChatGPT為**的大語言模型對信息資源建設、信息組織與檢索、信息治理等方面的影響[28]。趙楊等構建融合AIGC技術的智慧圖書館體系框架[29],儲節旺等從服務方式、服務內容、服務效果等三個方面分析AIGC對智慧圖書館服務的沖擊[30]。國外有學者指出基于ChatGPT的聊天機器人系統是傳統的基于知識庫的聊天機器人的可行替代方案[31],同時AI聊天機器人可能會對參考咨詢實踐、館藏開發以及元數據創建和轉換產生影響[32]。上海半坡的遠程訪問服務能夠促使圖書館現有數字文獻館藏發揮更大的讀者服務效益?;ヂ摼W智慧導讀排行榜

智慧導讀面向內外部資源及線上線下資源統一整合、多模態數據有效存儲、數據資源多向調用的需求,遵循數據庫設計塊、智能設施模塊構建基礎設施層。其中,服務器設施模塊敏捷部署各類適用于圖書館數智服務的軟硬件,提供資源并發計算及服務及時響應能力。網絡設施模塊通過實現圖書館內部鏈接及外部跨連的必要通信設備,滿足數據高速傳輸、安全有效保障的網絡服務需要。智能設施模塊綜合應用智能感知、智能管理、智能服務三類設備,構建覆蓋多維交互渠道、提供多類功能的智能設備集群,進而支撐圖書館業務場景精細感知、巨量復雜資源動態調度、智能服務跨域互融。創新智慧導讀價格信息智慧導讀-閱讀軌跡是用戶的搜索與上傳文件所生成的語義腦圖,根據時間排序的歷史記錄。

信任作為一個重要概念術語從社會學、***學、經濟學等傳統社會科學遷移到信息傳播領域。社會學和***學領域的信任指向一般性的、穩定的、長期的信任,經濟學和組織行為學領域的信任通常結合信任發生的具體情境來展開,指向的是一種有條件的、有情境的信任,相關研究為智慧閱讀情境下的用戶信任問題提供基礎概念和研究工具?;ヂ摼W的普及改變計算機系統形態—從封閉的、熟識用戶群體的、相對靜態的形態,轉向開放的、公共可訪問的、動態協作的服務模式,用戶信任問題呈現以下特征。
生成式AI在生成內容的過程中,經常會遇到生成內容準確度不高的問題,包括以下場景:表達錯誤,錯別字、病句較多,多有亂碼符號;邏輯混亂,上下旬沒有銜接,多為拼湊和重復內容;排版混亂,無段落,無標點,文章亂碼;圖文不相符,圖片模糊不清,圖片中有不良誘導或蹭流量的內容;音畫低質,視頻畫面傾斜、倒置、鏡像翻轉,畫面拉長變形,模糊不清;視頻濾鏡失真,邊框占比大,水印嚴重遮擋畫面等。因此,圖書館應配備專業人員對內容進行訂正調整,同時探索關于AI生成內容質量評估的相關理論,為生成內容提供依據。大數據環境下圖書館應該把讀者的閱讀行為、身份特征、個人愛好與習慣和社會關系等隱私數據。

閱讀理解能力直接關系到學術閱讀的效果,而閱讀認知策略則影響著閱讀理解能力,情境、技術、體驗等要素影響閱讀認知過程,認知神經科學視角下的數字閱讀認知機制包含注意吸引、識別聚焦、關聯推理和學習建構4個階段[47]。以前受制于技術條件,無法提供個性化、動態性與精細性的閱讀認知策略服務。人工智能環境下,AMiner、YewnoDiscover、PaperDigest等平臺開展嘗試,開發自動綜述、生成解讀視頻、研究要素分享提供等功能,助力于“識別聚焦”與“關聯推理”過程。但提供此種服務的平臺數量仍較少,作為學術用戶常用數字入口的文獻數據庫在此方面有待優化。AIGC技術環境下,海量知識存儲訓練的大模型面世,能夠在沉浸式閱讀、輔助閱讀方面提供支持。智慧導讀可以讓讀者更加自主地學習。提供智慧導讀用戶體驗
信息技術是閱讀服務創新的驅動力,AIGC 技術勢必將驅動閱讀服務的變革,促進智慧圖書館的服務創新。互聯網智慧導讀排行榜
數據資源建設方面。學術平臺底層資源的數據化程度決定平臺的智慧化程度[45]。一方面,注重加強用戶學術閱讀行為數據的采集與挖掘,包括閱讀內容偏好、閱讀時長、閱讀場景、閱讀情緒、閱讀心理、社交數據等,添加基本標簽、偏好標簽、會話標簽、情景標簽、互動標簽構建用戶實時動態畫像模型。另一方面,側重開發學術資源數據,包括細粒度內容資源、個性化閱讀資源庫、科研專題資料庫、課程文獻中心等,并做好與用戶閱讀行為數據的關聯建設。例如,面向教育數字化轉型的需求,山東大學圖書館構建學術數據服務平臺,打造學者—機構—成果關聯的數據資源[46]。以這些數據為基礎,AIGC技術嵌入后將會實現多模態數據關系映射、轉換及數據感知與挖掘分析。互聯網智慧導讀排行榜